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Summary

 

When using traditional discrete multiple indicator condi-
tional simulation, semivariogram models are based on the
spatial variance of data above and below selected thresh-
olds (cut-offs).  There are two problems though; 1) the spa-
tial distribution of a threshold can be difficult to
conceptualize, and 2) ordering of the indicators may influ-
ence the results, unfortunately to change the arbitrary
order, to test sensitivity, involves substantial effort.  If the
conditional simulations instead are based on the indicators
themselves (classes), rather than the thresholds separating
the indicators, then the spatial statistics are more intuitive,
and reordering the indicators becomes a trivial endeavor.
When class indicators are used, the indicator order can be
switched at any time without recalculating the semivario-
grams.  If thresholds are used, and the ordering is changed,
all the semivariograms must be recalculated.  A final
advantage of using the class approach is that semivario-
grams calculated from transition probabilities go directly
into the simulation.  Despite significant differences in the
methods, the simulation results are nearly identical, for
cases where ordering does not cause differences when
using the threshold approach.  Given the consistency result-
ing from the class approach and its ease of use, this
approach is preferred.

 

Introduction

 

In traditional Multiple Indicator Conditional Simulation
(MICS), the kriged model results are based on semivario-
grams describing the spatial distribution of the thresholds
between indicators.  The affect of the order of the indica-
tors on the resulting realizations is rarely evaluated even
though the numerical order is arbitrary.  For traditional
simulation, the estimated indicator at a location is based on
the probability that the location is below each threshold
(the number of thresholds equals the number of indicators
minus one).  A more intuitive approach is based on calcu-
lating the probability of occurrence of each individual indi-
cator.  This paper presents a technique which uses
semivariogram models based on individual indicators
(classes), as opposed to the traditional threshold semivario-
grams which are based on the indicators below a cut-off
versus the indicators above the cut-off.  

These differences can be described mathematically as fol-
lows.  Where the data set has been differentiated into a
finite number of indicators, it is possible to define a random

function (Z(x)) whose outcomes will have values in the
range z

 

min

 

 to z

 

max

 

.  From the definition of the indicators, K
thresholds can be defined (K + 1 equals the number of indi-
cators) where:

 

(1)

 

The  random variable Z(x) can then be transformed into an
indicator random variable I(x:z

 

k

 

) by:
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The first moment of the indicator transform yields:
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)} is the expectation of I(x:z
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} and P{Z(x) > z
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} are the probabilities Z(x) is less than
or greater than the threshold z

 

k

 

.  This equation is equivalent
to the univariate cumulative distribution function (CDF) of
Z(x).  For classes, similar equations can be defined.
Classes (c

 

i

 

) are equivalent to the indicators defined using
thresholds in equation 1, and are defined:

 

(4)

 

Once the classes are defined, the random variable Z(x) can
be transformed into an indicator random variable I(x:z

 

k

 

)
by:

 

(5)

 

and the first moment of the indicator transform yields:

 

(6)

 

In this case, the univariate probability distribution function
(PDF) is defined.  By summing the PDF components,  the
univariate CDF is obtained.
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Classes vs. Thresholds: 

 

Because the equations to define the class or threshold
expectation are fundamentally the same, the class method
generates realizations that are equally accurate to threshold
realizations, but with three advantages.  First, it is easier to
conceptually relate the model semivariograms to the spatial
distribution of the geologic units.  When class semivario-
grams are calculated, the range reflects the average size of
the units, whereas the threshold semivariograms represent
the distribution of indicators above or below a threshold
and these can be difficult to conceptually equate to units in
complex geologic settings.  The first and last class and
threshold semivariograms will always be identical (they are
based on equivalent indicator sets), however the intermedi-
ate semivariograms may vary substantially.  The intuitive
sense for the threshold semivariogram range decreases
with an increasing number of indicators, while Class semi-
variogram ranges, still reflect the average size of the unit.
The second advantage to using classes is that sensitivity to
indicator ordering can be evaluated without developing
additional semivariogram models. If thresholds are used,
the full suite of threshold semivariogram models must be
recalculated for each reordering.  The final advantage is
that semivariograms can be calculated for transition proba-
bilities (Carle and Fogg, 1996).  The class approach does
have several disadvantages: 1) more order relation viola-
tions occur, though because of the techniques utilized with
thresholds, some of these may simply not be visible,
though present, 2) it is computationally more expensive
(one additional kriging matrix must be solved per grid
cell), and 3) it requires one additional semivariogram
model definition.  The last two items are only a concern, if
ordering sensitivity is not evaluated.  If sensitivity to order-
ing is a concern, preparation for the threshold method
requires far more human effort and computer time to
develop and analyze the additional semivariogram models.

 

Methods

 

To use classes, the threshold simulation process is modified
at the data definition level, and in the evaluation of the
kriged CDF. 

 

Data Definition

 

To calculate a threshold indicator semivariogram, an indi-
vidual threshold is selected.  All values below the threshold
are assigned a 1, and values above the threshold are
assigned a 0.  For class semivariograms, locations with
sample values that are in the class being evaluated are set to
1,  the remaining values are set to 0.

If imprecise soft data are used (data with non-negligible
uncertainty), with associated misclassification probabili-

ties, the following steps are required.  First, the probability
that the data correctly, or incorrectly, reflect the class is
defined using misclassification probabilities (p

 

1

 

 and p

 

2

 

): 

p

 

1

 

: Given that the actual value is less than the threshold
(in the class), p

 

1

 

 is the probability that the measured
value is less than the threshold (in the class).

p

 

2

 

: Given that the actual value is not less than the thresh-
old (not in class), p

 

2

 

 is the probability that the mea-
sured value is less than the threshold (in the class).

These values are determined by comparing the soft data to
co-located hard data using a training set.  After p

 

1

 

 and p

 

2

 

have been determined, the misclassification probabilities
can be used for the same type of soft data, at locations
where hard data are not present. 

Using indicator thresholds, p

 

1

 

 and p

 

2

 

 are determined by
measuring the ability of soft information to correctly clas-
sify the hard training set data above and below a specified
threshold level.  The misclassification probabilities are
defined as:

 

p

 

1

 

 = A / (A + D) (7)
p

 

2

 

 = B / (B + C) (8)

 

In region A, points are correctly classified below the speci-
fied threshold, in C, they are correctly defined as above the
threshold.  In regions B and D, the soft data incorrectly
classify the sample.  Ideally p

 

1

 

 is greater than p

 

2

 

.  For hard
data p

 

1

 

 = 1.0 and p

 

2

 

 = 0.0.  If the soft data are not corre-
lated with the hard data p

 

1

 

 = p

 

2

 

 (NOTE: p

 

1

 

 and p

 

2

 

 are not
expected to sum to 1.0).  The difference between p

 

1

 

 and p

 

2

 

indicates the quality of the soft data.  When using indicator
classes, rather than thresholds, the implications of p

 

1

 

 and
p

 

2

 

 are the same, but calculation is more complex and p

 

2

 

tends to increase as the number of classes increase.  A
graphical representation for calculating p

 

1

 

 and p

 

2

 

 is shown
for three classes in Figure 1.  The misclassification proba-
bilities are defined as:

 

p

 

1

 

 = E / (D + E + F) (9)
p

 

2

 

 = (B + H) / (A + B + C + G + H + I) (10)

 

In region E, points are correctly classified as being
included in the specified class.  In regions A, C, G, and I,
they are correctly defined as being outside of the class.  In
regions B, D, F, and H, the soft data incorrectly classify the
sample.

The p

 

1

 

-p

 

2

 

 misclassifications for the class and threshold
approaches are identical for the first and last indicators,
because the upper or lower bound is missing, and the class
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equations reduce to those for thresholds.  For other classes
and thresholds, p

 

1

 

 and p

 

2

 

 estimates vary significantly.  For
thresholds, the soft sample values need only be on the cor-
rect side of the cut-off for the threshold to correctly iden-
tify the hard data sample.  Using classes, the soft data have
both high and low cut-offs, therefore the soft data must pre-
cisely identify a location as a member (or not) of a hard
data class (Figure 1).  This is a more restrictive constraint
and as a result, the class p

 

1

 

-p

 

2

 

 values are lower than those
for threshold simulation. The quality of the soft data has
not changed, it is just defined differently.  What has
changed is the ability of the algorithm to describe the
imprecision.

 

Difference Between Prior Hard and Prior Soft Data CDF’s for 
Class and Threshold Simulations

 

An additional and important difference between class and
threshold simulation is the definition and treatment of the
difference in the hard data and soft data prior probability
distributions.  Often, hard and soft data collection tech-
niques suggest different percentages of each indicator
occurring at the site.  If the simulator uses thresholds, the
correction term is based on:

 

| (% hard data < threshold) - (% soft data < threshold) |

 

If classes are used, the correction term is based on:

 

| (% hard data = class) - (% soft data = class) |

 

The difference is subtle, but important.  For the threshold
approach, if the probability of a single threshold varies sig-
nificantly between the hard and soft data, the importance of
the remaining thresholds can be under-valued. Reordering
the indicators can alleviate some of this problem.  For the
class approach, the relative occurrence of each indicator is
directly compared, therefore when one class has very dif-
ferent prior hard and prior soft probabilities, it does not
seriously affect other class estimates, because the error is
not cumulative.

 

Order Relation Violations

 

As with traditional threshold simulation, the class CDF for
a particular grid location may not be monotonically
increasing and may not sum to 1.0.  These are order rela-
tion violations (ORV’s).  They can be caused by use of
inconsistent semivariogram models for the different thresh-
olds or classes, or by use of different prior probabilities and
p

 

1

 

-p

 

2

 

 weights applied to soft data. Threshold and class
methods manage ORV’s differently, due to differences in
how the CDF’s are generated, and technical difficulties in
reducing the threshold CDF to a PDF.

One type of ORV occurs when the CDF declines from one
threshold to the next (Figure 2a).  A CDF is a cumulative
probability, so a declining CDF is an impossibility.  It is not
possible to determine which threshold causes the problem,
therefore to remedy the situation, the average of the two
probabilities is assigned to both thresholds.  For classes,
the equivalent problem is an individual class having a neg-
ative probability of occurrence  (Figure 2b: indicator #2),
which is also an impossibility.  In this case though, it is rea-
sonable to assign that class a zero probability of occur-
rence.  There is no reason to distribute the error to another
unrelated indicator.

Another type of ORV occurs when the CDF sums to a
value greater than, or less than 1.0.  For thresholds, the last
threshold CDF term is often less than 1.0 (Figure 2a), and
it is assumed that the balance of the CDF is described by
the final indicator.  This may be true, but as shown in an
equivalent class example, it is possible for the final indica-
tor to account for significantly more (or less) than the
remaining portion of the CDF (Figure 2c).  With classes,
the overestimate in the CDF is proportionally absorbed by
each of the PDF components (PDF

 

new

 

 = PDF

 

old

 

 / CDF

 

final

value

 

).  In this example, the threshold method would not
have recognized that an ORV occurred and there would be

 

FIGURE 1. Graphical method for calculating p

 

1

 

 and p

 

2

 

values for a specific class.  Data from CSM Survey Field.
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no correction.  The CDF may also exceed 1.0 (Figure 2d).
Some threshold algorithms manage this problem by trun-
cating the CDF to 1.0 for the affected threshold (and all
following thresholds).  This solution is not very satisfying,
in part, because it implies the offending threshold level is
fully responsible for the error, even though the CDF is a
cumulative probability (i.e., an earlier threshold could be
the cause of the problem), and because of this, it biases
results to the lower order indicators.  Classes again, man-
age this situation by distributing the error over all the PDF
components (Figure 2e). 

These techniques for managing class ORV’s are less biased
then the threshold method.  This is fortunate, since the
class method also produces more ORV’s.  However, these
additional ORV’s are basically ignored by the threshold
approach (compare Figures 2a vs. 2c).  

 

Conclusions

 

Class simulation has significant advantages over threshold
simulation:

• Class simulation is more intuitive.
• Testing simulation sensitivity to indicator ordering is

trivial to setup.
• The last CDF value is calculated rather than implied.
• Class simulation better identifies ORV’s, and correctly

adjusts the weights.
• Hard and soft data prior probabilities differences tend

to be smaller.  
• Semivariograms can be calculated from transition

probabilities.

There are some disadvantages to using classes too:

• Class simulation yields poorer p

 

1

 

-p

 

2

 

 estimates.
• Class simulation requires one additional semivario-

gram model.
• Class simulation is computationally more expensive.
  

The last two disadvantages, are insignificant if indicators
are reordered to test model sensitivity.
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FIGURE 2. For both the class and threshold approach, there
are two basic types of order relation violations (ORV).  a) An
individual CDF probability is less than the CDF of a smaller
threshold (the CDF is decreasing); this is equivalent to a class
having a negative probability of occurrence. This type of
ORV is resolved for thresholds by averaging the two CDF’s
so that they are equal; for classes, a 0.0 probability of
occurrence is assigned to the PDF.  b) When cumulative
probabilities are greater than 1.0, the value is truncated to 1.0
for the threshold approach, while for the class approach, the
probability of each class is proportionally rescaled, so that the
CDF will sum to 1.0.
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