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Directional Semivariograms: Kriging Anisotropy Without Anisotropy Factors
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Summary

 

It is often difficult to fit a model semivariogram to both the
principle-axis and the minor-axes using traditional methods
with anisotropy ratios.  Traditionally, models (possibly
nested) are modified with anisotropy factors; these
represent the relative range of the semivariogram for three
orthogonal axes.  This technique is restrictive, and this
discussion presents a method for relieving this limitation
by defining different semivariogram models, independently
for each axis.  These are referred to as directional
semivariograms.  The process increases the kriging
processing time by 80% to 200%, but the method offers the
modeler greater flexibility, and simulation or estimation
results that are more representative of the site, because the
spatial variation of the data can be more precisely defined.

 

Introduction

 

Semivariogram modeling is the foundation for
geostatistical analysis, and can also be the most difficult
and time consuming portion of the analysis.  In part, this is
due to the computationally intensive calculations, but it is
also due to the difficulty in defining semivariogram models
which reasonably honor the experimental semivariograms
in the principle and minor search directions.  With current
techniques that use anisotropy factors (Englund and
Sparks, 1988; Journel and Huijbregts, 1978; Deutsch and
Journel, 1992), often it is not possible to model all the
orthogonal experimental semivariograms exactly.
Consequently compromises are required for the definition
of one, or even all of the models.  If the compromises are
not too substantial, then this approach is acceptable,
because, generally the kriged results are relatively
insensitive to minor changes in the semivariogram.
Although this insensitivity offers some comfort, a method
that economizes human time and offers more precision is
preferable.  This paper describes a procedure, which allows
the modeler to define a unique semivariogram model for
each orthogonal axis of the experimental semivariogram.  

 

Theory

 

This algorithm uses components of each model to
determine 

 

γ

 

(h) values between the axes.  Anisotropy factors
are not used, rather the modeler specifies the number of
nests, sills, ranges, and model structure types
independently for each axis.  The only requirements are 1)
the nugget must be the same for all models, and 2) the total
sill must be the same at infinity.  These two requirements

are not particularly restrictive.  Requiring the nugget to be
the same is reasonable, because at zero distance, direction
is irrelevant.  The requirement that the total sill components
are equal ensures that the kriging matrix is not singular.  If
different sills are desired, then this requirement is met by
defining an extremely large range for the final nest to make
up the balance of the sill component.  The error introduced
by the final nest has no significant affect on the area of
interest.

This technique allows the modeler to honor the results of
the experimental semivariogram analysis, thus it is easier to
model the data set and the results are more accurate.
However, the calculation of 

 

γ

 

(h) is substantially more
complex than traditional methods, therefore the method
requires computational effort.  The additional effort is
comparable to the computational effort required for the
search procedure and matrix solution portions of the
kriging algorithm so, the task, only increased total
processing time by about 80% to 200% (based on observed
differences in computation time for example data sets).
This is acceptable, because the semivariogram model
preparation is simplified, and the simulations or estimates
more closely honor the spatial statistics of the site.

Two steps of the kriging process are modified to
incorporate directional semivariograms into the kriging
algorithm: 1) the search for nearest neighbors, and 2) the
calculation of the covariance components of the kriging
matrix.  The first step in estimating the value for a grid
location is to find the influential neighboring points. For
isotropic situations the nearest sample points are the best
estimators.  For anisotropic situations, the best estimators
are those points with the smallest spatial variance
calculated from the model semivariogram (

 

γ

 

(h)).  Using
anisotropy factors, the sample point locations are
transformed to equivalent isotropic space, using a simple
transformation and rotation, based on the orientation of the
principle model axis, and the anisotropy factors of the
minor-axes.  Once transformed, the estimation variance is
solely a function of the distance between the grid location
and the sample point, therefore 

 

γ

 

(h) doesn’t have to be
calculated.  Conventional techniques (Deutsch and Journel,
1992; Gómez-Hernández and Srivastava, 1990), use
Pythagoras’ Theorem to find the closest points.   When
directional semivariogram models are used, direction as
well as distance is important. Consequently, a simple
transformation and rotation is not possible (Figure 1).  For
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this reason, 

 

γ

 

(h) must be calculated for each sample in the
search neighborhood, and those points with the smallest

 

γ

 

(h) values are the most influential, and thus constitute the
most influential neighbors.

Once the most influential neighboring data points have
been selected, the kriging matrix is solved as usual, with
the exception of the 

 

γ

 

(h) calculation.  Again, for directional
semivariograms, it is not possible to transform points into
isotropic space, therefore components of the individual
axes must be resolved.  Whether 

 

γ

 

(h) is calculated to
determine the most influential neighbors or individual
components of the kriging matrix, the same technique is
used as described in the following section.

 

Equations and Proof

 

Calculating 

 

γ

 

(h) to determine the nearest neighbors for a
grid location, or to define individual components of the
kriging matrix, requires the equation for an ellipsoid:

 

(1)

 

Using this equation, it is possible to separate the
components of each semivariogram model for any vector
(Figure 2). One point is translated to the axis origin, and
the second point is positioned at |x|, |y|, and |z|, along the
separation vector (h).  Here a, b, and c, represent the
maximum practical ranges of the semivariogram models
along the X-, Y-, and Z-axes respectively.  In this section
only, when the actual ranges are used, the a

 

actual

 

, b

 

actual

 

,
and c

 

actual

 

, subscripts will be used.  The practical range
refers to the distance where the semivariogram model
meets the variance.  For the Exponential and Gaussian
models, this is defined as 95% of the variance.  The
practical ranges for different models are defined as (Journel
and Huijbregts, 1978): 

If the unadjusted range and not the practical range is used,
the axis defined with the model using the longest practical
range will be under-weighted.  The equations for
determining each component 

 

γ

 

(h)

 

X,Y,Z

 

 and the resultant

 

γ

 

(h) are derived below. The components of each axis for
each structure of the nested semivariogram model can be
related through the aspect factors:

 

f = a/b (2)

g = a/c (3)

FIGURE 1. With directional semivariograms, distance alone
does not determine the most influential neighbors.  In this
example, all points in the minor model axis direction (b) that
are separated by less than x

 

2

 

 (158 m) have smaller 

 

γ

 

(h)’s than
points separated by x

 

1

 

 (109 m) on the major-axis (a).  The
same is true for x

 

3

 

 and x

 

2

 

 respectively.
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FIGURE 2. Directional semivariogram analysis components.
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p = b/c (4)

 

Rearranging Equation 1, the ellipsoid factors a

 

2

 

, b

 

2

 

, and c

 

2

 

for the search vector are solved:

 

(5)

(6)

(7)

 

Where a’, b’, and c’ represent the X, Y, and Z-axis
intercepts for an ellipsoid passing through an arbitrary
point, (x, y, z) along the same vector, where the aspect
ratios defined by a, b, and c remain true, the following
relationships are also true:

 

,  ,  (8a, b, c)

 

An additional axis, R, is also required.  R is defined by the
intersection of the X-Y plane, and the vertical plane
passing through the point (x, y, z).  To determine the
semivariogram components, the point r, which lies on the
R-axis, vertically below the point (x, y, z) is defined:

 

(9)

 

Two additional points of interest are where the
semivariogram model ellipsoid and the ellipsoid passing
through (x, y, z) cross the R-axis; these are d and d’
respectively. Defining these two ellipsoids, with the aspect
ratios described above, the components of each
semivariogram model can be derived.  One new aspect
ratio is needed between the R- and Z-axes.

 

q = d/c (10)

 

The distances a, b, c, and d represent the practical model
range and a’, b’, c’, and d’ represent the practical
component range along each axis for the point (x, y, z).
The parameter d represents the semivariogram model along
the R-axis and is a combination of models a and b.  Once a,
b, x, and y are known, then d can be determined.  For a
circle, the angle 

 

φ

 

 is described as: 

 

(11)

 

Usually, the model semivariogram ellipse (X-Y plane) will
not be a circle, therefore the anisotropy must be removed to
determine the component angle 

 

φ

 

.  This is the product of y

and the aspect ratio of the ellipse (

 

φ

 

 in the X-Y plane,
major/minor dimension):

 

(12)

 

The angular components of a and b can then be described
by:

 

,  (13a, b)

 

The components can then be summed to calculate d:

 

(14)

 

By expanding 

 

φ

 

 and solving, using radians, the equation
may be rewritten:

 

(15)

 

d’ can be determined by proportion:

 

(16)

 

Given distances a’, b’, c’, and d’, it is possible to solve
directly for 

 

γ

 

(a’), 

 

γ

 

(b’), and 

 

γ

 

(c’).  To solve for 

 

γ

 

(d’

 

actual

 

),
the argument used for d is repeated,  The components of

 

γ

 

(a’

 

actual

 

) and 

 

γ

 

(b’

 

actual

 

) can then be described by:

 

(17)

(18)

 

The components are then summed to calculate 

 

γ

 

(d’

 

actual

 

):

 

(19) 
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By expanding 

 

φ

 

 and solving, the equation may be
rewritten:

 

(20) 

 

To solve for 

 

γ

 

(e’

 

actual

 

), where e’ is the distance from the
origin to the point (x, y, z), steps similar to those used to
generate d and 

 

γ

 

(d’

 

actual

 

) are required.  Allowing

 

γ

 

(d’actual) to be equivalent to 

 

γ

 

(a’

 

actual

 

), and 

 

γ

 

(c’

 

actual

 

)
equivalent to 

 

γ

 

(b’

 

actual

 

), this yields:

 

(21)

 

These calculation must be evaluated for each nest of the
model structure except the nugget (

 

γ

 

(h)

 

0

 

).  The nugget,
having zero distance, by definition is the same for all axes.
This also implies that the number of structures in every
direction must be equal.  This restriction can be negated by
giving undesired nests a zero variance component and the
same range as the previous structure.  The final 

 

γ

 

(e’

 

actual

 

)
estimate is the summation on the nugget (i=0) and the
nested structure components:

 

(22)

 

Positive Definite

 

The previous equations describe how the orthogonal axes
can be independently defined and modeled.  A possible
problem with this method is it that a number of equations
are merged into hybrid equations.  In nested structures, this
is acceptable, but Myers and Journel (1990) suggest that
this may lead to non-invertible covariance matrices (i.e.
models that are not positive definite) when the model
equations are applied orthogonally.  Positive definite
matrices are required by the kriging algorithm.  

Although we have not proved these hybrid equations yield
positive definite matrices, the basic two- and three-
dimensional problems described by Myers and Journel, do
not occur.  Also, several basic tests to validate the
assumption of positive definiteness, are not violated (Isaaks
and Srivastava, 1989):

i) x

 

t

 

Ax > 0 for all non-zero vectors x.
ii) All the eigenvalues (

 

λ

 

i

 

) of A are greater than 0.
iii) All the upper left submatrices A

 

k

 

 have positive
determinants.

iv) All the pivots (d

 

i

 

, without row exchange) are greater
than 0.

This does not prove the equations yield positive definite
matrices, but it is a good indicator they do.

 

Conclusions

 

This paper describes the calculation method for directional
semivariograms.  The procedure simplifies modeling  the
experimental semivariograms, because one need not
compromise when selecting model types and sills for each
axis. There is an increase in computational effort which
increases total processing time (observed times increased
80% to 200%), but this cost is relatively minor when
compared to the total time the modeler spends developing
semivariogram models.  Overall, use of directional
semivariogram modeling requires additional computational
time, but modeler effort is reduced, and a significant
increase in accuracy may be attained.
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