CHAPTER 4 CLA$VS TH RES_IOLD
INDICATOR SMULATION

With traditional discrete multiple indicator conditional simulation, semivariogram models are
based on the spatial variance of data above and below selected thresholds (cut-offs). The spatial
distribution of a threshold is difficult to conceptualize. Also, in some cases, ordering of the
indicators may influence the results, and changing the arbitrary order, to test sensitivity of the
results to the order, involves a substantial effort. If the conditional simulationsinstead are based on
the indicators themselves, rather than the thresholds separating the indicators, then the spatial
statistics are more intuitive, and reordering the indicators is a trivial endeavor. When class
indicators are used, the indicator order can be switched at any time without recalculating the
semivariograms. If thresholds are used, and the ordering is changed, al the semivariograms must
be recalculated. Despite the significant difference in methods, the model results are nearly
identical.

4.1: Introduction

In traditional Multiple Indicator Conditional Simulation (MICS), the kriged model results are based
on semivariograms describing the spatial distribution of the cut-off’’s between indicators. The
affect of the order of the indicators on the resulting realizations is rarely evaluated even though the
numerical order is arbitrary. For traditional simulation, the estimated indicator at a location is
based on the probability that the location is below each threshold or cut-off (the number of
thresholds equals the number of indicators minus one). A more intuitive approach is based on
calculating the probability of occurrence of each individual indicator. This chapter presents a
technique which uses semivariogram models based on individua indicators (classes), as opposed to
the traditional threshold semivariograms which are based on all the indicators below a cut-off
versus all the indicators above the cut-off.

These differences can be described mathematically as follows. Where the data set has been
differentiated into a finite number of indicators, it is possible to define a random function (Z(x))
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whose outcomes will have values in the range z,.,;, to z,,,.. From the definition of the indicators, K
thresholds can be defined (K + 1 equals the number of indicators) where:

2)<2,<..<% D

The random variable Z(x) can then be transformed into an indicator random variable I(x:z,) by:

L if Z(x) <z,
I(x:z) =0, . k=1..K
,if Z(x) >z
%) (x) >z 42
The first moment of the indicator transform yields :
E{I(x: )} =1x P{Z(x) < .} + 0x P{Z(x) > 2,}
=Py Z(x) <
Azt =2 (4.3)

where E{I(x:z,)} is the expectation of I(x:z), and P{Z(x) < z} and P{Z(x) > z} are the
probabilities Z(x) is less than or greater than the threshold z,. This equation is eguivalent to the
univariate cumulative distribution function (CDF) of Z(x). For classes, similar equations can be
defined. Classes(c;) are equivalent to the indicators defined using thresholds in equation (4.1); they

can also be defined by:

0L if Z(x)<z;
H2,  ifz<Z(x) <z

¢ =0

Ok, if zg_g <Z(X) < z¢

HK +1, if Z(x) > 2 wa

Once the classes are defined, the random variable Z(x) can then be transformed into an indicator
random variable | (x:z,) by:

L, if Z(x) = ¢ .
I(x:ci):%)’ it 200 % ¢ i=1..,K+1
' (4.5)
and the first moment of the indicator transform yields:
E{I(x:c)} =1x P{Z(x) = ¢} +0x P{Z(x) # c;}
=PZ =C
A269 =ci} (4.6)
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Here, instead of this defining the univariate CDF, the univariate probability distribution function
(PDF) isdefined. By summing the PDF components though, it can to converted into the univariate
CDF defined by equation (4.3).

Because the equations to define the class or threshold expectation are fundamentally the same, the
class method generates realizations that are equally accurate to threshold redlizations, but it has two
main advantages. First, it is easier to conceptually relate the model semivariograms to the spatial
distribution of the materials. When class semivariograms are calculated, the range reflects the
average size of the indicator bodies (Figure 4.1):

Class Horizontal Range
Silt 112
Silty-Sand 106
Sand 60
Gravel 411

where as, the threshold semivariograms represent the distribution of indicators above or below a
threshold:

Threshold Horizontal Range
Silt vs. (Silty-Sand, Sand, & Gravel) 112
(Silt & Silty-Sand) vs. (Sand & Gravel) 68
(Silt, Silty-Sand, & Sand) Vs. Gravel 41

and these can be difficult to conceptually relate back to the original data in complex geologic
settings. It is important to note, that the first and last class and threshold semivariograms will
always be identical (they are based on equivalent indicator sets (0's and 1's)). The intermediate
semivariograms, though may vary substantially.  The intuitive sense for the threshold
semivariogram range also tends to decrease with an increasing number of indicators. Class
semivariogram ranges though, still reflect the average size of the indicator body. The second
advantage to using classes is that sensitivity to indicator ordering can be evaluated without
developing additional semivariogram models. If thresholds are used, the full suite of threshold
semivariogram models must be recalculated for each reordering. The class approach does have
several disadvantages. 1) more order relation violations occur (discussed later), 2) it is
computationally more expensive (one additional kriging matrix must be solved per grid cell), and 3)
it requires one additional semivariogram model (the number of class semivariograms equals the
number for thresholds, plus one). Thelast two items are only an issue, if ordering sensitivity is not
a concern. |If sensitivities are a concern, preparation for the threshold method requires far more
human effort and computer time to devel op the additional semivariogram models.
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Spatial Distribution of Indicators
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FIGURE 4-1. Spatia distribution of several indicators. Defining semivariograms based on
indicator classes is more intuitive, because the range reflects the average size of the indicator
bodies. The class semivariogram model ranges are: silt = 112m, silty-sand = 106m, sand = 60m,
and gravel = 41m. For thresholds, semivariogram model ranges are: silt vs. al others = 112m, silt
and silty-sand vs. sand and gravel = 68m, and gravel vs. al others = 41m.

4.2: Previous Work

The "best-estimate” of the conditions at a site may not necessarily be a realistic interpretation of
actual site conditions. By their nature, estimation techniques such as Ordinary Kriging, are
averaging algorithms which smooth much of the true site variability (Figure 4.2). To address this
issue and devel op atechnique that would both honor the data and their spatial statistics, conditional
(constrained by field data) simulation techniques were developed . These techniques use a
probabilistic (Monte-Carlo) approach to estimate site conditions. When estimating a value for a
particular location, the probability that the value is less than each threshold is determined, arandom
number is generated, and an indicator value is assigned based on that random number. Asaresult a
single "realization” will retain much of the variability exhibited by the field data, but a single
"realization” may be a poor representation of actual site conditions. When using simulation
techniques, many models must be calculated; each preserves the nature of the spatial data, but each
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Conditional Simulation

Estimate
From Data

2(h)

Reality

o Data Point

h (distance) (Journel and Huijbregts, 1978)

FIGURE 4-2. Ordinary Kriging (and most other estimation methods) tends to average or smooth
data to achieve a best linear unbiased estimate (BLUE) of reality. Indicator Kriging with
conditional simulation provides a means for modeling the variability observed in nature, while still
honoring the field data. Conditional simulation does not produce a best estimate of reality, but it
yields models with characteristics similar to reality. When multiple reaizations are made and
averaged, values will approximate the smoothed, BLUE.

has a random component. When grouped together (assuming an adequate number of simulations
arerun), the average result is, in theory, the same as a” best-estimate” kriged map.

Several different varieties of conditional simulation are commonly used. Some are based on
continuous data (e.g. contaminant concentrations; Deutsch and Journel, 1992), and others on
discrete data (e.g. geologic units, Deutsch and Journel, 1992). A simple example to distinguish the
two methods isto consider two points representing two different indicators (1 and 3). If an estimate
for a point mid-way between the indicators is desired, the results can be quite different depending
on which method is used. If a continuous simulator is used, the result would be the average, or
indicator 2. If the indicators represent concentrations (indicators #1 = 1 ppm, #2 = 10 ppm, and #3
= 50 ppm) the result is reasonable. If the indicators represent geologic units (indicators #1 = clay,
#2 = sand, #3 = basalt), the averaged solution does not have a physical basis (sand it not
intermediate to clay and basalt). Discrete simulation should be used for the latter case, and the
result would be either indicator 1 or 3. If continuous data are used, either simulation approach can
be applied, but only discrete simulation is considered in this chapter.

Indicator simulation requires that one or more semivariogram models be calculated; one for each
threshold (sometimes a single median semivariogram model based on the median sample value is
applied to all thresholds . To estimate a value for a particular location, the distance, direction, and
value of the neighboring samplesis used to determine the probability that the estimate will be less
than each threshold. This process generates a cumulative density function (CDF). Oncethe CDFis
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calculated, a random number is generated, and for that realization, a specific estimate is selected.
Class and threshold indicator kriging generate the CDF in different ways as shown in Figure 4.3. A
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FIGURE 4-3. Class and threshold indicator kriging generate the cumulative density function (CDF)
in different ways. Threshold CDF's are determined directly from the probability that the specified
grid location is less than each threshold level (a). Thefinal CDF term should be less than 1.0 with
the remaining probability attributed to the final indicator. Calculating class CDF's requires two
steps. First the probability of occurrence of each classis calculated (b). The PDF is converted into
a CDF by summing the individual PDF terms (c). |deally the probabilities will sum to 1.0. For
both the threshold and class approaches, a random number between 0.0 and 1.0, is generated to
determine the estimated indicator for the cell. From the random number (e.g. 0.82), a horizontal
lineis drawn acrossto the CDF curve, an avertical line is dropped from the intersection, to identify
the indicator estimate (5).

random path is followed through the grid (Figure 4.4), because, unlike ordinary kriging methods,
previously estimated values are treated as hard data samples and influence subsequent estimates.
Finally, to perform a full analysis of a site, many realizations (the resultant map from one
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FIGURE 4-4. Thisillustration shows the step wise manner in which agrid iskriged using Indicator
Kriging in conjunction with stochastic simulation. Grid cells containing sample data (hard data
and some types of soft data) are defined prior to kriging. Once these points are defined, the
remaining cells are evaluated. To krige an unestimated cell, a random location is selected,
evaluated and redefined as a hard data point, then the next undefined cell is randomly selected.
This cell selection and estimation process is continued until al grid cells have been visited and
defined.

simulation) must be generated, because each realization represents only one possible interpretation;
not the best or most likely interpretation.

4.3: Methods

Two steps of the simulation process are modified in order to use classes rather than thresholds for
simulation. First, indicator semivariograms are calculated based on the individua indicators rather
than thresholds, and second, the indicator kriging algorithm defines the kriging matrix based on the
probability an indicator occurs, as opposed to the probability that the location being estimated is
below a given threshold. These changes were incorporated into an existing computer program,
SISIM3D .
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4.3.1: Semivariogram Calculation

To calculate a traditional indicator (“threshold”) semivariogram, an individua threshold or cut-off
is selected (Journel and Huijbregts, 1978). All values below the cutoff are assigned a 1, and values
above the cutoff are assigned a0. When using “class’ semivariograms, data locations with sample
values that equal the indicator value being simulated are set to 1, the remaining values are set to 0.
The class approach differs from threshold approach in that both a low and a high cut-off are
defined.

4.3.2: Data Definition

The hard and soft data labeling conventions are defined differently for class and threshold
simulations. For both approaches, each data point is transformed into an indicator mask composed
of 0's and 1's (some soft data may have an associated probability distribution reflecting a weight
between 0 and 1, for a particular class or threshold level). Using traditional methods, the mask is
set to 0 if the data value isless than the specified indicator threshold, and the mask is set to 1, if the
data value is greater than the specified indicator threshold. For example, hard data with the
indicator order basalt, clay, silt, sand, gravel, and cobbles, would have the following traditional
indicator masks:

Basdt =11111
Clay  =01111
Silt = 00111
Sand = 00011
Gravel = 00001

Cobbles = 00000

There is one less mask (5) than there are indicators (6). For class semivariograms, the mask
indicates whether the data point is (1) or is not (0), the specified indicator. For the same example
given above, the masks would be:

Basdlt = 100000
Clay = 010000
Silt = 001000
Sand  =000100
Gravel =000010
Cobbles = 000001

Using the class method, the number of masks equals the number of indicators.

Soft data are those associated with non-negligible uncertainty. Three different soft data types are
summarized below:

* Type-A:lmprecise data. These data are classed as a given indicator with associated
mi sclassification probabilities described in the next section.
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» Type-B:Interval bound data. The value at these locationsis known to fall within agiven
range (i.e., the probability of occurrence is zero outside of the interval), but the
probability distribution within that range is unknown.

» Type-C:Prior CDF data. A probability density function (PDF) is known for these data.
The data could be one of several indicators; the most likely indicator is defined by the
PDF. The PDF could be defined from an analogous site or expert opinion.

Several masking examples for both class and threshold indicators are given below:
Class Threshold Comments

* Type-A = 001000 00111 The quality of this information is described with a
p;-p, term (see next section).

* Type-B = 001110 00111 The datum is known to represent one of severa
indicators. There is no information available
though to describe which indictor is most likely.
The PDF is built by kriging the surrounding data.

* Type-C =001110 00111 The datum is known to represent one of several
indicators, and there is a PDF available to describe
the probability of occurrence for each indicator
(e.g., 0%, 0%, 20%, 50%, 30%, 0%).

For Type-B data, the threshold method requires that additional information be stored defining the
top of the interval. These notation methods are not strict theoretical requirements, but are
conventions for this particular algorithm.

4.3.3: P,-P, Calculations

When describing Type-A (imprecise) data, the probability that the data correctly, or incorrectly,
reflect the value being classified is defined by the misclassification probabilities, p; and p, . They
are defined as:

p,: Given that the actual value is less than the threshold (or in the class), p; is the
probability that the measured value is less than the threshold (or in the class) (correctly
classified).

p,: Given that the actual valueis NOT less than the threshold (or not in the class), p, isthe
probability that the measured value is less than the threshold (or in the class)
(incorrectly classified).

These values are determined by comparing the soft data to co-located hard data with atraining set.
After p; and p, have been determined, the misclassification probabilities can be used for the same
type of soft data, at locations where hard data are not present.

Using indicator thresholds, p; and p, are determined by measuring the ability of soft information to
correctly classify the hard training set data above and below a specified threshold level. Thisis
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shown graphically, for two thresholds, in Figure 4.5. The misclassification probabilities are defined
as.

p,=A/(A+D) 4.7
p,=B/(B+C) 4.8

Inregion A, points are correctly classified as being below the specified threshold, Inregion C, they
are correctly defined as being above the threshold. In regions B and D, the soft data incorrectly
classify the sample. Ideally p, is greater than p,. For hard datap; = 1.0 and p, = 0.0. If the soft
data are not correlated with the hard data p, = p, (NOTE: p, and p, are not expected to sum to 1.0).
The difference between p, and p, indicates how useful the soft data are for classifying the samples.
When using indicator classes, rather than thresholds, the implications of p; and p, are the same, but
calculating p; and p, is more complex and the misclassification probabilities tend to increase as the
number of classesincreases. A graphical representation for calculating p; and p, is shown for three
classesin Figure 4.6. The misclassification probabilities are defined as:

p,=E/(D+E+F) (4.9
p,=(B+H)/(A+B+C+G+H+I) (4.10)

In region E, points are correctly classified as being included in the specified class. InregionsA, C,
G, and |, they are correctly defined as being outside of the class. Inregions B, D, F, and H, the soft
dataincorrectly classify the sample.

Due to the nature of the p,-p, classification scheme, the results for the class and threshold p;-p,
terms are identical for the first and last indicators (Figures 4.5 and 4.6: Thresholdg,s, p;-p, =
Class_gp59 = 0.67, and Threshold, gy P1-P2 = Class. ggpe = 0.73). This is because, in the class
method, the upper or lower bound is missing, and the equations reduce to that used for thresholds.
For other classes and thresholds, the p,;-p, will vary significantly. If asinglethreshold is used, there
are only four possible classifications (A, B, C, D). Basically the soft sample values need only be on
the correct side of the cut-off for the threshold to correctly identify the hard data sample. Using
classes, the soft data have both high and low cut-offs, therefore the soft data precisely identify a
location as being, or not being, a member of a hard data class (Figure 4.6). This is a more
restrictive constraint and as aresult, the interior class p;-p, values are lower than those for threshold
simulation. The quality of the soft data has not changed, it is just defined differently. What has
changed is the ability of the algorithm to describe the imprecision. Other approaches have been
proposed, but are not implemented here.

4.3.4: Difference Between Prior Hard and Prior Soft Data CDF’sfor Class and
Threshold Simulations
An additional and important difference between class and threshold simulation is the definition and

treatment of the difference in the hard data and soft data prior probability distributions. After the
kriging matrix has been solved, the CDF is estimated for each class or threshold. The CDF
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H=11
1=73 pl-p2=0.13
Class> 10000 A=213 pl=73/(15+73+0)=0.83
B=23
D=15 p2=(23+0)/(213+23+0+0+0+0)=0.10
E=73
pl-p2=0.73
Class: < 9250 E=158 pl=158/(0+ 158 + 31) = 0.84
F=31
H=23 p2=(0+23)/(0+0+0+0+23+112) =0.17
=112
pl-p2 =0.67

FIGURE 4-6. Graphical method for calculating p; and p, values for a specific class. Data from
CSM Survey Field.
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estimate is calculated from the hard and the soft data points in the search neighborhood, the relative
frequency of each indicator in the prior hard and soft data, and by the soft data scaled by the p;-p,
term discussed above. Often, hard and soft data collection techniques suggest different percentages
of each indicator occurring at the site. If the simulator uses thresholds, the correction term is based
on:

| (percentage of hard data < threshold) - (percentage of soft data < threshold) |
If classes are used, the correction term is based on:
| (percentage of hard data = class) - (percentage of soft data = class) |

The difference is subtle but important. For the threshold approach, if the probability of a single
threshold varies significantly between the hard and soft data, particularly if it is the first threshold,
the importance of the remaining thresholds can be under-valued. Reordering the indicators could
alleviate some of this problem. For the class approach, the relative occurrence of each indicator is
directly compared, therefore when one class has very different prior hard and prior soft
probabilities, these will not seriously affect other class estimates. This is because, indicators are
directly compared, and errors are not cumulative.

4.3.5: Order Réeation Violations

As with traditional threshold simulation, the class CDF for a particular grid location may not be
monotonically increasing and may not sum to 1.0. These are order relation violations (ORV'S).
They can be caused by use of inconsistent semivariogram models for the different thresholds or
classes, or by use of different prior probabilities and p;-p, weights applied to soft data. Using the
algorithms described here, thresholds and classes manage ORV'’s in dightly different manners.
Thisis, in part, due to theoretical differencesin how the CDF's are generated, but it is al'so due to
technical difficulties in equating the threshold CDF and the class PDF.

The method for managing threshold ORV’s in SISIM3D was not modified, but the methods used
were not appropriate for classes. Therefore a new set of tools for managing class ORV'’s was
developed. The differences between the two methods are described below and are diagrammed in
Figure 4.7.

For the threshold method, one type of ORV occurs when the CDF declines from one threshold to
the next (Figure 4.7a8). A CDF is a cumulative probability, so a declining CDF is physicaly
impossible. Itisnot possible to determine which threshold causes the problem, therefore to remedy
the situation, the average of the two probabilities is assigned to both thresholds (note, the indicator
associated with the declining CDF term, has zero probability of occurrence). For classes, the
equivalent problemis an individual class having a negative probability of occurrence (Figure 4.7h:
indicator #2), which is also physically impossible. In this case though, it is reasonable to simply
assign that class a zero probability of occurrence. Thereis no obvious reason to distribute the error
to another unrelated indicator.

Another type of ORV occurs when the CDF sums to a value greater than, or less than 1.0. For
thresholds, the last threshold CDF term is often less than 1.0 (Figure 4.7a), and it is assumed that
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FIGURE 4-7. For both the class and threshold approach, there are two basic types of order relation
violations (ORV). a) An individual CDF probability is less than the CDF of a smaller threshold
(the CDF is decreasing); this is equivalent to a class having a negative probability of occurrence.
Thistype of ORV isresolved for thresholds by averaging the two CDF's so that they are equal; for
classes, a 0.0 probability of occurrence is assigned to the PDF. b) When cumulative probabilities
are greater than 1.0, the value is truncated to 1.0 for the threshold approach, while for the class
approach, the probability of each classis proportionally rescaled, so that the CDF will sum to 1.0.
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the balance of the CDF is described by the final indicator. Thisis generally the case, but as shown
in an equivalent class example, it is possible for the final indicator to account for significantly more
(or less) than the remaining portion of the CDF (Figure 4.7c). With classes, the overestimate in the
CDF can be proportionally absorbed by each of the PDF components (PDF,,, = PDF,4 / CDF;4
vaue)- 1N this example though, the threshold method would not have recognized that an ORV
occurred. It is also possible that the threshold CDF will exceed 1.0 (Figure 4.7d). Currently
thresholds manage this problem by truncating the CDF to 1.0 for the affected threshold (and all
following thresholds). This solution is not very satisfying, in part, because it implies the offending
threshold level is fully responsible for the error, even though the CDF is a cumulative probability
(i.e., an earlier threshold could be the root cause of the problem). It is also unstatisfying because it
biases results to the lower order indicators. Classes again, manage this situation by distributing the
error over al the PDF components (PDF,,, = PDF 4/ CDFf4 vaue: Figure 4.7e).

As implemented, the techniques for managing class ORV’s are less biased then the threshold
method. Thisisfortunate, since the class method also produces more ORV'’s. It isfelt though, that
some of these extra ORV’s occur when the threshold CDF does not sum to 1.0, and a mistaken
assumption is made that the remaining indicator exactly contributes the remaining portion of the
CDF (compare Figures 4.7avs. 4.7¢).

4.4. Applications

Two data sets are used to demonstrate that class indicator simulations generate statistically identical
realizations as threshold indicator simulations. Thefirst isasimple synthetic data set with fourteen
hard data points. The two series of solutions yield similar results, but are not exactly the same,
because of the differences in how ORV’s are managed. The second data set is from the Colorado
School of Mines Survey Field in Golden, Colorado and includes hard data, as well as Type-A, B,
and C soft data. The use of classesrather than thresholdsis not meant to improve results, rather it is
intended to render the process more intuitive, and to facilitate testing the sensitivity of simulations
to the order of the indicators.

4.4.1: Synthetic Data Set

The synthetic data set is composed of fourteen samples distributed in two-dimensional space,
representing one of three indicators (silt, silty-sand, and sand) (Figure 4.8). A single isotropic
median semivariogram model is assumed for each indicator threshold or class, because with this
small data set, it was not possible to generate useful experimental semivariograms for each
threshold or class. Use of a median indicator semivariogram model under these conditions is a
reasonable and recommended approach . This also ensures that the differences between the
resulting simulationsis a function of the algorithm and not due to differences in the semivariogram
models. The median semivariogram model is:
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Data Distribution
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FIGURE 4-8. Synthetic data set distribution.

Model Type = Spherical

Range =162m
Sill =0.244
Nugget =0.0

A regularly spaced, two-dimensional, 50 by 35 grid of 10 m by 10 m grid cellsis used to create six
series of 200 realizations each (this defines the final grid; a coarse pre-grid 20m by 20m was first
calculated. Thisismanaged within SISIM3D and isfairly transparent to the modeler). Three series
are generated for the threshold approach and for the class approach with the same reordering of
indicators. For thefirst simulation series, the indicators are defined as:

Silt =0
Silty-Sand =1
Sand =2
For the second series, the indicator order was reversed:
Silt =2
Silty-Sand =1
Sand =0

and because the order is arbitrary, the indicatorsin the last series were defined as:
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Silt =0
Silty-Sand =2
Sand =1

If a median indicator semivariogram model was not being used, the threshold semivariogram
models would have to be recalculated, but the class semivariogram models would remain
unchanged. The averaged results of the simulation series are expected to be nearly identical in
these cases, because a median indicator semivariogram is used, but in a field application, different
semivariogram models would be used for each class and threshold, and the results of the class
simulations are likely to vary from the threshold results. For individual simulations, changing the
indicator order will change results, because the new ordering also changes the CDF. The indicator
components of the PDF are unaltered, but with the new order, a different CDF is built (Figure 4.9).

a). Reordered Class PDF b). Reordered Class CDF
1.0 -

i H |
z |
£ 05 4 |
o I
& |
] ] |
— I

0.0 1 | I | I I |

3 5 2 1 4 3 5 2 1 4
Indicator Indicator

FIGURE 4-9. Reordering indicators in conditional simulation changes the results for an individual
simulation grid cell, because the CDF changes along with the indicator ordering, even though the
individual components of the PDF do not. Here the indicators from Figure 4.3 have been
reordered. The same random number is used, but now, instead of indicator #5 being selected,
indicator #4 is selected.

As aresult, when the same "random” number is used are used to select from the CDF, a different
indicator is selected (Figure 4.9).

4.4.1.1: Initial Indicator Ordering

The class and threshold simulations generate visually similar, but not identical realizations for the
original indicator ordering scheme (silt = 0, silty-sand = 1, sand = 2). Cell by cell comparison of
the realizations reveals that differences do occur, but these differences are caused by differencesin
the way order relations violations are resolved in the two methods. Despite these differences, the
results are sufficiently similar, that both sets of results are considered reasonable and acceptable.
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Severa redlizations from each simulation series are shown in Figures 4.10 and 4.11. For each

a). Threshold Realization #32 (Series #1) Class Realization #32 (Series#1)

Northing (m)
Northing (m)

0 100 200 300 400 0 100 200 300 400
Easting (m) Easting (m)
b). Threshold Realization #32 (Series#2 - Rever sed) Class Realization #32 (Series#2 - Reversed)
| b |

T T

Northing (m)
Northing (m)

0 100 200 300 400 0 100 200 300 400
Easting (m) Easting (m)
c). Threshold Realization #32 (Series#3 - Reorder ed) Class Realization #32 (Series #3 - Reordered)

Northing (m)
Northing (m)

0 100 200 300 400 0 100 200 300 400
Easting (m) Easting (m)

FIGURE 4-10. Realization (#32) pairs for the &) origina indicator ordering, b) reversed ordering,
and c) arbitrary reordering for thresholds (left) and classes (right). In these redlization pairs there
are significant differences between the class and threshold results: a) there is more silty-sand in the
classrealization at location (270, 10); b) sand bisects the silt in the threshold realization at location
(100, 100); this not present in the class realization; ¢) more sand is in the class realization at
location (270, 10). The differences between the realization pairs in a, b, and ¢ are expected,
because reordering the indicators changes the CDF.

paired realization set (realizations using the same random number seed) there are clear similarities
in the results, but there are al so significant differences (e.g. the Southern portion of Realization #32,
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a). Threshold Realization #100 (Series#1) Class Realization #100 (Series#1)
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b). Threshold Realization #100 (Series#2 - Reversed) Class Realization #100 (Series#2 - Rever sed)
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¢). Threshold Realization #100 (Series#3 - Reor dered) Class Realization #100 (Series#3 - Reor der ed)

Northing (m)
Northing (m)

sand
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sand
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FIGURE 4-11. Realization (#100) pairsfor a) original indicator ordering, b) reversed ordering, and
¢) arbitrary reordering for thresholds (left) and classes (right). These threshold and classrealization
pairs are similar. The differences between the realization pairsin a, b, and ¢ are expected, because
reordering the indicators changes the CDF.

Figure 4.10). The class readization has more silty-sand near location (270, 10) than the threshold
simulation (Figure 4.10a). In other model pairs, there are only minor differences (e.g. Realization
#100, Figure 4.11). The similarities occur because the same " random” path is used to generate each
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model grid pair (Figure 4.4), and the same "random” number is used to select from the CDF. For
most cells, the CDF is sufficiently similar that the same estimate is made for each cell. Because
there are differences in how negative probabilities are generated and resolved, the CDF's are
slightly different in some instances. When this occurs, a random number can be generated which
results in a different estimate for the cell. From that point on, the results of the two realizations
will diverge, because previously estimated cells are treated as hard data values in subsequent
calculations for, as yet, unestimated cells in the simulation. Depending on the location and timing
of the divergent estimate, results may be quite similar or different. When the indicators are
reordered, the results change substantially (Figures 4.10b,c and 4.11b,c vs. 4.10a and 4.11a). For
example, in the second set of Figures 4.11a-c, the amount and distribution of the silty-sand varies
substantially. This occurs because the order of the CDF has been changed, yet the same random
numbers are used. Individual realizations are not expected to be similar when the indicator order is
changed; the averaged results of many realizations though, should be the same.

It is useful to compare differences between the uncertainties associated with the realization series
instead of comparing individual simulations. In Figures 4.12a-f, the 200 realizations for each
simulation series have been summed and averaged for each indicator, showing the probability that a
particular indicator will occur at each location (red indicates areas where the indicator always
occurs, and blue indicates where the indicator never occurs). If these maps are summed (Figures
4.12a+c + e or 4.12b + d + f) every cell will equal 100 percent. The maps and histograms in
Figures 4.13a-f and 4.14a-f present the distribution of the maximum probability of any indicator
occurring for each approach for each cell, providing an overall measure of uncertainty. With three
indicators, the minimum value is 33% (blue: al indicators equaly likely to occupy cell) and the
maximum value is 100% (red: at locations with hard data point). ldeally these maps would be
nearly identical, signifying that, although different estimation techniques are used, the same net
result is obtained. However, in this case the threshold orderings, always have a slightly higher
mean probability of occurrence (Figures 4.14a, ¢, and e mean values versus 14b, d, and e mean
values), which implies the threshold results are dlightly better than the class results. The
differences though are small, and as will be shown in section 4.4.2.2, threshold results are not
always associated with greater certainty. In this example, class and threshold realizations vary by
as much as 12% in some areas (Figure 4.15a: the largest differences areindicated in red and blue (+
and - errors), with green areas yielding nearly identical results). This is because the variation of
uncertainty caused by simply reordering the indicators is of a similar magnitude for threshold
simulations. Thisis demonstrated in the next section and illustrated in Figures 4.15b and 4.15c.

4.4.1.2: Reverse and Arbitrary Indicator Ordering

Although the initial comparison of class and threshold simulations indicate small, local areas that
are significantly dissimilar, the variations are on the same scale ( are simply reordered (Figures
4.15b and 4.15¢). If the differences which occur from an arbitrary reordering of the indicators are
no larger than those that result from using classes, it is concluded that the class and threshold
techniques are essentially the same.

When the order of the indicators is simply reversed (silt =0 2, silty-sand = 1, sand = 2 0), the
differences in the threshold simulations are relatively minor, again about rily reordered (silt = 0,

82

T-4595: Colorado School of Mines



4.4: Applications
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FIGURE 4-12. Maximum probability of occurrence for each indicator. At hard data locations, the
indicator type is known; the probability is 0% for any other indicator type, or 100% for the
specified indicator type.

silty-sand =1 2, sand =2 1, Figure 4.15¢). Giventhislevel of variability in realization results, due
only to the order of the indicators, similar variations due to class simulation indicate that the
approach is as acceptable as the threshold approach. Additional realizations (1000's) are being
computed to determine if these differences are due to the size of the ssimulation series (200). These
results though, are not yet available.
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a). Threshold Simulation Series#1
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€). Threshold Simulation Series#3 (Reordered)
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FIGURE 4-13. Maximum probability of occurrence of any indicator. At known data points, the
maximum probability of being a particular indicator is 100%. The minimum probability is 33%
(100% / # of indicators); at these locations each indicator is equally likely to occur. These mapsare
useful for evaluating the spatial distribution of uncertainty.

Variability of results for different ordering of indicators using class indicator smulation is equally
consistent. Result from two reordering schemes are shown in Figures 4.15d (silt =0 2, silty-sand =
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FIGURE 4-14. Fregquency of maximum probabilities throughout the grid. At known data points, the
maximum probability is 100%. The minimum probability is 33% (100% / # of indicators); at
locations where each indicator is equally likely to occur.

1, sand =2 0) and Figures 4.15e (silt = 0, silty-sand =1 2, sand = 2 1). As with the threshold
realization series, the differences in the class realization series appear random and are limited to
approximately
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a). Threshold - Class Simulation Series
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FIGURE 4-15 a,b. Difference between a) threshold and class maximum probability maps, and b) threshold and threshold (reversed)
probability maps. These maps show areas, where the different series return different averaged results. Differences are largest, although
of opposite sign, in red and blue areas. Differences are smallest in green areas. The histograms are useful for identifying the magnitude
and distribution of the differences.
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€). Class- Class (Reordered) Simulation Series
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FIGURE 4-15 e,f. Difference between @) class and class (reordered) maximum probability maps, and b) threshold (reversed) and class
(reversed) probability maps. These maps show areas, where the different series return different averaged results.  The histograms are
useful for identifying the magnitude and distribution of the differences.
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For each ordering scheme, the differences between the threshold and class simulations (Figures
4.15a, 4.15f, and 4.150) are less then the differences between different ordering schemes when the
same method was used. Given these similarities, and knowing that differences result in differences
in managing ORV's, it is concluded that class and threshold simulation generate equivalent results.

4.4.1.2.1: Smulation Differences Due to Indicator Order

One of the initial motivations for using classes was to eliminate the differences in simulations
resulting due to indicator ordering. As seen in the examples above, the class simulations have a
similar problem. The probability for each class indicator is calculated independently, therefore
order should not make a difference, yet it does. If the differences are not due to computer round-
off, there should be differences in the kriging matrices or the kriging weights, however cells with
different results were identified and compared, and this was not the case. It is possible that some of
the differences due to indicator ordering are associated with the random number generator but this
is difficult to demonstrate or prove. The random number generator used in this program was
evaluated for agroup of 10,000 and 100,000 random numbers (Figure 4.16a,b,c), and no serious, or
obvious hias was found, but all numbers are not equally sampled. These differences could explain
some of the differences in the simulation results, because when the indicators are reordered,
preferences to different "random” number ranges could cause abias. It isthought that the source of
the problem, is the management of the ORV’s.

4.4.1.2.2: Smulation Differences Due to Order Relation Violations

Resalization #32 (Figure 4.17 (these are the coarse pre-grids for the realizations in Figure 4.10a)) is
used to demonstrate the difficulties that arise, due to ORV’s. The first violation occurred at cell
((25, 2) (490m, 30m)) during the simulation of the coarse grid (realizations are calculated in two
passes; a coarse grid is ssimulated first, then it is used to condition the fine grid). Calculations for
this cell were based on 37 values (including original sample points and prior estimated grid cells)
(Table 4.1). Because the same semivariogram models were used for all class and threshold levels,
the class and threshold kriging matrices were identical, therefore the kriging weights were
identical. The following uncorrected CDF (threshold) and PDF (class) values were calculated:

CDF PDF
Threshold | F(Z<thr.) Threshold | F(Z=class)
05 0.563 1.0 0.563
15 1.089 20 0.526
3.0 0.000

Both the threshold (1.089 > 1.0) and class (0.563 + 0.526 = 1.089 > 1.0) probabilities needed to be
rescaled to 1.0. The threshold method truncates CDF values greater than 1.0 to 1.0, and the class
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g). Threshold (Reordered) - Class (Reordered) Simulation Series
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FIGURE 4-15 g. Difference between threshold (reordered) and class (reordered) maximum probability maps. These maps show areas,
where the different series return different averaged results.  The histograms are useful for identifying the magnitude and distribution of
the differences.
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FIGURE 4-16. Test of random number generator: &) scatter of 10,000 sequential random numbers,
b) frequency distribution of 10,000 random numbers (equal distribution would put 1% in each
class), and c) frequency distribution of 100,000 random numbers (equal distribution would put 1%

in each class).
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FIGURE 4-17. Coarse grid redlization (#32) pair for the original indicator ordering. These grids,
are dightly different, due to an ORV occurring at (490m, 30m). Because of the ORV, the CDF's
varied between the two methods at this cell, and a random number in each realization selected
different material types for the cell. From this point forward, the prior sample data, and prior
evaluated cells varied.
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method scales all the PDF terms so they will sumto 1.0. The corrected distributions are:

CDF PDF
Threshold | F(Z<thr.) Threshold | F(Z=class)
05 0.563 1.0 0.517
15 1.000 20 0.483
3.0 1.000
and the final class PDF is converted to a CDF:
CDF CDF
Threshold | F(Z<thr.) Threshold | F(Z=class)
05 0.563 1.0 0.517
15 1.000 20 1.000
3.0 1.000

4.4: Applications

The probabilities are no longer the same, and in this realization, a random number of 0.547 was
generated to select the indicator class. Asaresult, for the threshold realization, the cell was defined
as silt (indicator #1; 0.547 < 0.563). For the class redlization, the cell was defined as silty-sand
(indicator #2; 0.547 > 0.517).

Although the methods initially agreed exactly on the probability of occurrence for indicators#1 and
#2, the different procedures for correcting the ORV's, resulted in different CDF's. As a
consequence, the results for this grid cell pair, and those following, diverged. With different
estimates for this cell, future class and threshold calculations using this cell as a conditioning point
would generate different CDF's even without further ORV’s.

4.4.2: Colorado School of Mines Survey Field

At the CSM survey field, located on the west edge of Golden, Colorado (Figure 4.18), hard and soft
data were collected to investigate the use of soft data for reducing uncertainty associated with
groundwater flow models. The site datainclude core and chip samples; borehole geophysical logs;
and eight (Figure 4.19), two-dimensional, cross-hole, tomographic sections. A sub-region of the
data set is used to demonstrate class vs. threshold indicator simulation.

This data set is used to compare the class and threshold simulation techniques, using, not only hard
data values, but also three different types of soft data. Because of differencesin the semivariogram
models, and management of soft data, the simulations generated using threshold and class
approaches were not identical. In this case, the class realizations have a dlightly higher average
certainty level, though uncertainty at individual cells can be substantially higher or lower than the
threshold models in the same cell. Some of the differences may be due the random number
generator, but most likely they result from differences in managing ORV'’s.

T-4595: Colorado School of Mines 93



CLASS VS. THRESHOLD INDICATOR SIMULATION

Wingle

Coarse Grid Postion Indicator 1D Kriging
X Y Z Threshold Class Weight
21 3 1 111 100 0.328
21 5 1 011 010 0.437
20 2 1 11 100 0.117
18 2 1 11 100 0.128
23 4 1 001 001 -0.051
21 7 1 011 010 0.048
17 7 1 011 010 0.104
22 8 1 001 001 -0.015
24 6 1 001 001 -0.018
24 7 1 001 001 -0.014
17 8 1 011 010 -0.007
15 3 1 111 100 0.044
15 2 1 111 100 -0.030
14 5 1 001 001 0.010
14 8 1 011 010 -0.023
23 11 1 001 001 -0.045
14 9 1 011 010 -0.033
24 1 1 001 001 -0.011
22 12 1 001 001 -0.004
14 10 1 011 010 0.000
24 12 1 001 001 0.041
1 3 1 11 100 -0.012
1 7 1 001 001 -0.005
1 1 1 11 100 -0.002
1 8 1 001 001 0.003
22 14 1 001 001 0.004
1 9 1 001 001 0.017
16 14 1 111 100 -0.001
14 14 1 111 100 0.004
7 5 1 001 001 0.001
7 10 1 111 100 -0.006
5 2 1 11 100 0.000
7 14 1 11 100 -0.001
4 10 1 001 001 0.000
3 2 1 111 100 -0.002
7 17 1 111 100 -0.002
1 2 1 111 100 -0.002

Silt 111 100

Silty-Sand 011 010

Sand 001 001

TABLE 4.1. Kriging weight and nearest neighbors for both class and threshold realization

#32. Theindicators at each point, and the kriging weights are identical.
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olden, Colorado

[1Crystalline Rock
[1Quaternary Deposits
[ Fountain Formation
B Lyons Formation

B Per mian - Cretaceous
Units

Colorado

(After Van Horn, 1972)

FIGURE 4-18. CSM Survey Field location map.

4.4.2.1: Model Definition and Simplifying Assumptions

The model and grid dimensions are based on the same data and indicator classes as described by
McKenna and Poeter (1994) for the CSM survey field (Figure 4.20). However, only a small sub-
grid was used for this demonstration. The grid was dimensioned 80 columns equally spaced
between 2,045 feet - 2,450 feet in the X direction, 60 rows equally spaced between 4,228 feet -
4,533 feet intheY direction, and 2 layers, each two feet thick between 5,917 feet - 5,921 feet in the
Z direction. This same grid was used for both the threshold and class simulation.

The eight indicator classes are based on seismic velocities of different materials at the site (Table
4.2). The indicators were selected after thorough analysis which concluded that the seismic
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CSM Survey Field site map. Dots represent borehole locations. Solid lines identify

location of tomography surveys.

Indicator

Material Description

o 0o A W N P

7
8

Conglomerate (Lyons Formation)

Fine to coarse sandstone with conglomerate lenses

Fluvial sandstone (Lyons Formation)

Very fine to very coarse sandstone

No core recovered. Moderately consolidated with low-moderate clay

Two materials: 1) silty sandstone, and 2) poorly sorted sandstone with
siltstone and conglomerate lenses

No core recovered. Poorly consolidated, low clay material

No core recovered. Well fractured area of any material type.

TABLE 4.2. Indicator and associated material type.

velocitiesreflected differencesin hydrologic flow properties. Several distinctly different lithologies
were grouped together because they displayed similar hydraulic properties and spatial correlation’s.
The indicator classes are defined in Table 4.3. Initial estimates of hydraulic conductivity values
were assigned to each indicator based on either material type, permeability measurements, or
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Indicator | Sonic Velocity (ft/sec) | Hydraulic Conductivity (ft/day)

1 > 10870 0.0011
2 10000 - 10870 0.0011
3 9050 - 10000 0.0025
4 8550 - 9050 0.0043
5 8050 - 8550 0.040
6 7250 - 8050 0.0043
7 6060 - 7250 0.40

8 < 6060 7.8

TABLE 4.3. Theindicator classification is based on sonic velocity measurements, and are
matched to approximate hydraulic conductivity’s.

estimated material sonic velocities. Later, inverse flow modeling was used to improve the hydraulic
conductivity estimates. The sonic-velocities were used as Type-A data as described in Tables 4.4

Threshold
Threshold Velocity
(ft/sec) Threshold P1 P2 P1-P2
6060 7 0.00 0.00 0.00
7250 6 0.56 0.04 0.52
8050 5 0.58 0.05 0.53
8550 4 0.63 0.10 0.63
9050 3 0.84 0.17 0.67
10000 2 0.90 0.17 0.73
10870 1 0.91 0.15 0.74
6060 velocity: No hard datato calibrate against. Found only in tomography cross sec-
tions.

TABLE 4.4. Threshold p;-p, estimeates.

and 4.5. The p;-p, values are significantly lower for the class method, because the class method is
more restrictive.

The frequency distribution of indicators was based on the same sample information (Tables 4.6 and

4.7). The soft data prior distributions are based only on hard and the Type-A data. Type-B and C
data were available, but assigning them to an individual class or threshold is not possible.

In order to make realizations for the class and threshold simulation as similar as possible, the same
data distributions and grid were used. It was not possible to use the same semivariogram models
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Class
Velocity Range
(ft/sec) Class P1 P2 P1-P2
< 6060 8 0.00 0.00 0.00
6060 - 7250 7 0.56 0.00 0.56
7250 - 8050 6 0.39 0.04 0.35
8050 - 8550 5 0.25 0.12 0.13
8550 - 9050 4 0.45 0.18 0.27
9050 - 10000 3 0.26 0.13 0.13
10000 - 10870 2 0.38 0.05 0.33
> 10870 1 0.84 0.00 0.84

6060 velocity: No hard datato calibrate against. Found only in tomography cross sec-

tions.

TABLE 4.5. Class p;-p, estimates.

Cumulative Probability
Threshold Hard Soft Difference
15 0.1638 0.2306 0.0668
25 0.2370 0.3120 0.0750
35 0.2706 0.5031 0.2325
45 0.3693 0.7306 0.3613
55 0.3886 0.8491 0.4605
6.5 0.5066 0.9429 0.4363
75 1.0000 0.9748 0.0252

TABLE 4.6. Threshold prior hard and prior soft (Type-A) data distributions. The large
differencein threshold 3.5 propagates through threshold 6.5.

(Tables 4.8 and 4.9) in both sets of simulations though, because the class and threshold methods
calculate the semivariogram models on different portions of the data set. The first and last
semivariogram models will aways be identical, but there can be significant differences in the
intermediate models. For example, the maximum range for threshold 3.5 is 282 feet in the East-
West direction and 174 feet in the North-South direction. For classes three and four, the respective
ranges are much shorter (111, 77 feet and 117 feet respectively). It is thought that most of the
differencesin the simulation results are due to the differences in the semivariogram models.

T-4595: Colorado School of Mines
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Individual Probability
Class Hard Soft Difference
1 0.1638 0.2306 0.0668
2 0.0732 0.0814 0.0082
3 0.0336 0.1911 0.1575
4 0.0987 0.2275 0.1288
5 0.0193 0.1184 0.0991
6 0.1180 0.0938 0.0242
7 0.4934 0.0319 0.4615
8 0.0000 0.0252 0.0252
TABLE 4.7. Class prior hard and prior soft (Type-A) data distributions.
East-West North-South Vertical
Threshold Range Sill Range Sill Range Sill Nugget
15 81.0 0.118 155.6 0.118 81.0 0.0623 0.0516
25 93.0 0.207 126.0 0.207 54.0 0.0061 0.0
35 75.0 0.169 174.0 0.246 210 0.0468 0.0
282.0 0.0783
45 90.0 0.0831 15.0 0.149 3.0 0.0405 0.0
204.0 0.145 99.0 0.0765 47.0 0.0358
55 132.0 0.189 12.0 0.158 36.0 0.0692 0.0
48.0 0.0308
6.5 78.0 0.129 15.0 0.129 93.0 0.0284 0.0
75 61.5 0.0208 185 0.0208 36.9 0.0079 0.0

NOTE: Multi-nested models require two rows.

TABLE 4.8. Threshold semivariogram models.

4.4.2.2: Geostatistical Realizations and Results

A total of 100 realizations were calculated for both the class and threshold models. In this section,
severa realization pairs are described, the probability that any individual indicator will occur is
defined, then the difference between the class and threshold realizations and the maximum
probability that any indicator will occur in each cell are calculated.

Examining the paired realizations from each set, it is clear that the same siteis being simulated, but
there are subtle, yet distinct differences in the realizations (Figures 4.21 and 4.22). The general
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East-West North-South Vertical
Class Range Sill Range Sill Range Sill Nugget
1 81.0 0.118 155.6 0.118 81.0 0.0623 0.0516
2 64.5 0.0720 20.3 0.0720 41.0 0.0374 0.0
3 110.7 0.0878 431 0.0397 92.3 0.0878 0.0447
116.9 0.0480

76.9 0.0880 116.9 0.0880 59.0 0.0880 0.0709
104.6 0.0878 64.6 0.0878 27.7 0.0658 0.0
150.7 0.0910 310 0.0910 31.0 0.0910 0.0
61.5 0.116 15.4 0.116 49.2 0.0569 0.0
61.5 0.0208 185 0.0208 36.9 0.0079 0.0
NOTE: Multi-nested models require two rows.

o N o o b

TABLE 4.9. Class semivariogram models.

distribution of indicators is similar, but the threshold realizations have more scatter, and produce
smaller regions of indicator #8 (examine grids near (2380, 4420): indicator #8 is red). The reason
for the differences are based on three factors: 1) differencesin the semivariograms, 2) differencesin
the p,-p, values, and 3) differences in applying the prior hard minus prior soft prior probabilities.
In theindividual realization pairs, the indicatorsin the threshold realizations tend to be slightly less
continuous. It appears this is caused by the large differences between the hard and soft prior
distributions and the ORV'’s.

In addition to the greater randomness in the threshold realizations, there is al'so larger uncertainty
associated with the spatial distribution of indicators. Several figures were prepared to illustrate the
differences in the results of the threshold and class simulations and to show that smaller
uncertainties are associated with the class simulations. Figure 4.23 illustrates the probability a
particular indicator will occur in each cell for both the threshold (left) and class (right) simulation
series. The highest certainty levels coincide with the hard and soft data locations (red = 100%, blue
= 0%). Figure 4.24 shows the difference between probability of occurrence for the class and
threshold simulation series for each indicator. The largest differences (red: class probability >>
threshold probability; green: class probability [threshold probability; blue: class probability <<
threshold probability) occur where the model has the most data. By examining the kriging matrix
results, and CDF development in these areas for several cells, the differences are largely due to
differences in how the prior data probabilities modify the CDF and how ORV'’s are handled
between the class and threshold techniques. The differences in uncertainty also tend to be small
away from the control data, because both methods are very uncertain as to what is occurring in
those areas (a small number minus a small number equals a small number). In areas of the model
grid with little or no data, the averaged results are more similar (green: differences [10.0), but there
is more uncertainty.

T-4595: Colorado School of Mines 101



CLASS VS. THRESHOLD INDICATOR SIMULATION Wingle

Threshold Realization #1
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FIGURE 4-21. Individual threshold and class realization #1.
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Threshold Realization #37
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FIGURE 4-22. Individual threshold and class realization #37.
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Threshold: Probability of Occurance - Indicator #1 Class: Probability of Occurance - Indicator #1
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FIGURE 4-23 a,b,c. Maximum probability of occurrence for threshold and class indicators #1, #2,
and #3. At known hard data points, probability is 0% for any other indicator type, or 100% for the
specified indicator type.

The maximum probability that any indicator will occur in each cell is shown in Figure 4.25 (red
implies more certainty, up to 100% at hard data locations; blue less, as little as 12.5% (100% / #
indicators)) with associated histograms presented in Figure 4.26. From the histograms, it can be
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Threshold: Probability of Occurance - Indicator #4
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FIGURE 4-23 d,e,f. Maximum probability of occurrence for threshold and class indicators #4, #5,
and #6. At known hard data points, probability is 0% for any other indicator type, or 100% for the

specified indicator type.

seen that thereis slightly less uncertainty in the class realizations (class mean maximum probability
(certainty level) is 37% compared the 33% for thresholds) and the differences in uncertainty are
presented in Figure 4.27a. Positive differences (green to red) show areas where the class
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Threshold: Probability of Occurance - Indicator #7 Class: Probability of Occurance - Indicator #7
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FIGURE 4-23 g,h. Maximum probability of occurrence for threshold and class indicators #7 and
#8. At known hard data points, probability is 0% for any other indicator type, or 100% for the
specified indicator type.

realizations are less uncertain than the threshold realizations; negative differences (green to blue)
show areas where the class realizations are more uncertain than the threshold realizations. These
maps are useful for defining the uncertainty in the model, but are not useful for analyzing the
distribution of a particular indicator. Again the largest differences are near areas of hard and soft
data (red: class certainty >> threshold certainty; green: class certainty [Ithreshold certainty; blue:
class certainty << threshold certainty), and this relates to the problems associated with the
difference in how ORV'’s are managed. For this site, the class realizations show |less uncertainty
than the threshold realizations. On average the mean uncertainty reduction is 3.9% with a standard
deviation of 9.3% (Figure 4.27b). Based on this model aone it is premature to suggest that the
class method may help reduce model uncertainty. In the synthetic models described in section
4.4.1.1, the threshold realizations had dlightly smaller uncertainties than the class realizations.
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Class- Threshold Probability: Indicator #1 Class - Threshold Probability: Indicator #2
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FIGURE 4-24 a,b,c,d. Difference between the class and threshold, individua indicators (#1-4)
maximum probability of occurrence maps.

4.5: Conclusions

It cannot be argued that class simulation is a numericaly better technique than threshold
simulation, but overal it is not worse. Class simulation has some significant advantages over
threshold simulation:

¢ Class simulation is more intuitive. The range of a class semivariogram is easier to
understand conceptually than the range of a threshold semivariogram.

e Testing simulation sensitivities due to indicator ordering is easy to perform.
Recalculation of semivariogram models is not required. In contrast, if thresholds are
used, a new semivariogram model must be caculated for each threshold for each
reordering, adding significant work for the modeler.
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FIGURE 4-24 e,f,g,h. Difference between the class and threshold, individual indicators (#5-8)
maximum probability of occurrence maps.

Several other advantages of using the classes approach were revealed during this analysis:

* ORV'’s, are more common with the class approach (a negative), because the last CDF
value is calculated rather than implied. However, ORV’s are more logical when the
CDF is greater than 1.0. It can be to argued that the increase in ORV’s occurs because
class simulation better identifies problem cells, and correctly adjusts the weights.

» Hard and soft data prior probabilities differences tend to be smaller. Using thresholds, a
large difference in an early class propagates through remaining indicators, making the
differences artificially large.

» Theoretically, though not proven here, the indicator ordering should not affect the
simulation results. Eventually though, it may be possible to relate the class
semivariograms to geological sequences ; geostatistics has not yet been able to
consistently observe geologic laws.

There are some disadvantages to using classes to:
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FIGURE 4-25 a,b. Maximum probability of occurrence of any indicator. At known data points,
probability is 100%. The minimum probability is 12.5% (100% / # of indicators); at these locations
each indicator is equally likely to occur (no cells had this minimum probability). These maps are
useful for identifying the spatial distribution of uncertainty.
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Threshold Maximum Praobability Distribution
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FIGURE 4-26 a,b. Histograms indicate the maximum probability of occurrence of any indicator.
At known data points, probability is 100%. The minimum probability is 12.5% (100% / # of
indicators); at these locations each indicator is equally likely to occur (no cells had this minimum
probability). Class realizations have dlightly higher mean indicating lower overall uncertainty.

* Class simulation depends on poorer p,-p, values for Type-A soft data. It is not that the
data quality has changed, but the method in handling the data has changed.
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Class - Threshold: Maximum Praobability Difference
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FIGURE 4-27. @) Spatia distribution of the difference between the class and threshold maximum
probability maps; b) histogram of the same information. The positive mean difference indicates the
classrealizations have alower level of uncertainty.

 Class simulation requires one additional semivariogram model. This requires more
effort on the modelers part if sensitivity to indicator order is not being evaluated.
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* Class simulation is computationally more expensive. An additional kriging matrix must
be solved for every grid cell.

The last two disadvantages, are insignificant if even one indicator reordering is done to test model
sensitivity to the indicator order. The modeler’s effort to develop new threshold semivariograms for
the new ordering outweighs the initial setup effort for the class approach. Class simulation is a
useful technique, if only because it is more intuitive.
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