
 

Evaluating Subsurface Uncertainty 
Using Modified Geostatistical 
Techniques

 

by:

William L. Wingle



 

ii

 

T-4595:  Colorado School of Mines



 

T-4595:  Colorado School of Mines

 

iii

 

A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial 
fulfillment of the requirements for the Degree of Doctor of Philosophy (Geological Engineer).

Golden, Colorado
Date: ____________________________

Signed: ______________________________
William L. Wingle

Approved: ______________________________
Dr. Eileen P. Poeter

Golden, Colorado

Date: ____________________________

______________________________
Dr. Roger Slatt
Professor and Department Head,
Department of Geology and 
    Geological Engineering 



 

iv

 

T-4595:  Colorado School of Mines



 

T-4595:  Colorado School of Mines

 

v

 

ABSTRACT

 

There is a great deal of uncertainty about the distribution of geologic and hydrologic properties in
the subsurface and the migration routes and extent of contaminants at most hazardous waste sites.
This is because site data is limited.  This research develops four geostatistical techniques which
facilitate the assessment of and/or the reduction in the level of uncertainty associated with
describing the subsurface.  First, jackknifing and Latin-Hypercube sampling are used to define the
uncertainty in the experimental semivariogram.  Second, directional differences in the spatial
variation of a semivariogram often cannot adequately be described using anisotropy factors; the
kriging process is modified to accommodate three unique, orthogonal, semivariogram models.
Third, the conditional simulation process is modified to use indicator classes rather than the
threshold level between indicators.  Fourth, zones at a site are modeled using individual and merged
model semivariograms.

Using these methods is complex; consequently, a software package, UNCERT, was developed to
integrate data collection, data evaluation, site interpretation, ground water flow and contaminant
transport modeling, and data and model visualization.  This software user interface makes the use
of these modified geostatistical methods a practical endeavor.
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CHAPTER 1

 

INTRODUCTION

 

When designing a remediation plan for a hazardous waste site where the ground water is
contaminated, there are several questions of concern about the contaminant: where is it, where is it
going, how long will it take to get there, and what can be done to contain or remove it.  To answer
these questions, one critical question is, what are the subsurface hydrologic flow conditions.
Unfortunately, as important as this question is, a precise answer is difficult to obtain.  This is largely
because we can only sample a small volume of the site; on the order of one 1/100,000th of the site.
Exploratory drilling is expensive and can create new migration routes between contaminated and
uncontaminated aquifers or zones, outcrops are generally very limited, and the distribution of the
materials that control the hydrologic conditions vary widely.  Because of the complexity of the
hydrogeologic flow system, and the scarcity of data, there is usually substantial uncertainty in the
subsurface description.

To describe some of this uncertainty, this research project develops several geostatistical techniques
with the purpose of better defining or reducing uncertainty.  A software package is also developed
to aid modelers with the data analysis, geostatistics and ground water flow and contaminant
transport modeling.  The geostatistical techniques developed here are:

• Jackknifing the semivariogram and Latin-Hypercube sampling.  These methods are
useful for defining the uncertainty associated with the semivariogram model definition
and applying that uncertainty in conditional indicator simulation.

• Directional semivariogram models.  With traditional kriging techniques, the model
semivariogram is defined and oriented in the direction with the longest spatial
continuity, thus the longest model range.  The spatial correlation, not oriented parallel to
the principal axis, is defined by anisotropy factors describing the minor perpendicular
axes.  This approach is computationally efficient, but it is limiting.  The method
developed in this research allows the modeler to describe and krige each orthogonal axis
independently.
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• Class discrete indicator simulation.  Traditional discrete indicator simulation techniques
are based on the cumulative probability that a cell is less than a cut-off level or
threshold.  When non-continuous, discrete data are evaluated, this approach can be non-
intuitive.  A method where the probability that a discrete indicator class occurs at a cell
location is developed here.  For the semivariogram analysis, this method is more
intuitive; for the simulation process, sensitivities due to indicator ordering are easier to
test; and though order relation violations are more common, the remedy is
mathematically more appropriate.

• Zonal Kriging.   One of the basic assumptions in kriging is the assumption of
stationarity (Journel and Huijbregts, 1978).  This implies that the spatial variation across
the site is approximately constant.  For many sites this may be reasonable, but for others,
this assumption will lead to significant errors.  The zonal kriging method developed in
this research project allows the model to be divided into unique and transitional regions.

A collection of program modules was developed to make these techniques practically useful for
ground water modelers (as well as researchers from other disciplines).  The software package is
called UNCERT, for its task is to facilitate uncertainty assessment of ground water problems.  It is
composed of a number of individual modules: array, block, contour, distcomp, grid, histo,
modmain, mt3dmain, sisim, surface, vario, and variofit.  These cover a variety of statistical,
geostatistical, ground water flow and contaminant transport models, and visualization applications.
These run in any UNIX, X-windows/motif environment.  All the major applications and tools
utilize a user friendly, graphical user interface.  Help manuals are also available for each package
on-line using HTML (Hypertext Markup Language).

Each of these methods or tools is presented in an individual chapter.  These chapters can be read as
“stand-alone” documents, though they are all related to geostatistics and reducing uncertainty.
Chapter 2 describes Jackknifing and Latin-Hypercube Sampling; Chapter 3, directional
semivariogram analysis; Chapter 4, class versus threshold based indicator simulation; and Chapter
5, Zonal Kriging.  In the final chapter, Chapter 6, there is a brief description of the UNCERT
software package which contains the software described in Chapters 2 through 5, and many other
statistical, geostatistical, visualization, and ground water modeling tools.  A more complete
description of the UNCERT package can be found on the tape (along with the source code) in
Appendix A, or on the World Wide Web at http://uncert.mines.edu/.
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CHAPTER 2

 

JACKKNIFING & 
LATIN-HYPERCUBE 
SAMPLING

 

Uncertainty is associated with interpretation of the subsurface, and stochastic simulation techniques
are incapable of accounting for all the uncertainty, if only a single deterministic semivariogram
model is utilized.  Jackknifing the sample data bounds the limits of model semivariograms, but
typically indicates that a large number of simulations must be conducted to consider the full
distribution of possible semivariograms.  Latin-Hypercube sampling, particularly when combined
with expert opinion reduces the number of simulations that must be created and evaluated.   For
small data sets, where there is significant uncertainty, this process provides for a more complete
assessment of the potential variability of the subsurface and of flow paths for contaminants, given
the available data.  Such assessment can be used to guide the data collection program and decision
making process.

 

2.1:  Introduction

 

Hydrogeologists recognize that heterogeneity of hydraulic parameters has a major influence on
groundwater flow and contaminant migration. Inaccurate description of the subsurface when
modeling contaminant transport in groundwater systems can result in selection of inappropriate
remedial actions.  Identification and characterization of continuous high hydraulic conductivity
units of complex geometry, which can dominate contaminant transport, is difficult because the
amount of drilling that can be undertaken to characterize the site is less than desired, either due to
expense, inaccessibility, or potential for creating pathways for contaminant migration.  Thus, the
modeler must settle for estimating the range of possible solutions, i.e. the modeler must evaluate
the uncertainty in the site definition, and determine how each alternative subsurface interpretation
may affect contaminant migration.  

At this time, the best approach is to integrate all available data from a site into a range of possible
subsurface interpretations and then consider the probability of satisfactory performance of
alternative remedial actions.  Multiple indicator conditional simulation (MCIS) blends indicator
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kriging and stochastic simulation to statistically evaluate the range of possible subsurface geologic
configurations.  Knowledge of the range of possible subsurface conditions aids the modeler in
defining best, worst, and most likely case scenarios as well as the probability of occurrence of
particular scenarios given the available data.  To date, such simulations have been carried out at the
level where the kriging matrix is solved, without incorporation of the uncertainty associated with
definition of the semivariogram. Such an approach is based on the assumption that the specified
semivariogram models are absolutely correct, but this is often not true, particularly when one
considers the limited data usually available at a typical hazardous waste site.  In such a situation use
of the estimation error to evaluate the accuracy of the kriging is misleading because it appears to
characterize uncertainty associated with the result but ignores the uncertainty associated with
selection of the semivariogram.  The result of a kriging process is based on the definition of the
semivariogram.  By evaluating the uncertainty in the semivariogram, the greater range of
uncertainty associated with the simulated results becomes apparent.  Uncertainty in the simulation
process can be more completely evaluated by using methods such as jackknifing , latin-hypercube
sampling , and expert opinion  in defining the semivariogram models to be used for stochastic
simulation.  These methods are discussed in this chapter.

Data collection is time consuming and expensive.  Data collection can be performed more
efficiently by examining data as they are collected, preparing experimental semivariograms,
plotting estimation errors, and using the results to select subsequent data types and locations.  Some
projects have used estimation errors to identify areas of greater uncertainty which can be targeted
for further data collection, thus optimizing dollars spent in site characterization .  Similarly,
evaluation of experimental semivariograms as data are collected can guide the data collection
program.

Because data are usually limited, the results of kriging can be misleading; depending on the
parameters used to define the semivariogram, the same data can yield different results. Although
kriging will produce results that honor the data, the estimated values at locations between sample
sites are non-unique.  The simple examples shown in Figure 2.1 demonstrate this point.  These
hypothetical, two-dimensional models represent two distinctly different geologic settings that are
indistinguishable by examination of only the well data. The sample data in Figure 2.1a and 2.1b are
identical.  Of the eleven well borings, six are in fine-grained sediments of relatively low hydraulic
conductivity (low K) and five are in coarse-grained sediments of generally high hydraulic
conductivity (high K).  Ideally more data should be collected, but because of cost constraints or
constraints on drilling locations, this may be the only data set that can be used.  Because different
geologic configurations can yield distinctly different contaminant plumes (Figure 2.2), incorrect
modeling of the site, or failure to recognize the uncertainty associated with subsurface
interpretation, can result in remedial action that does not accommodate conditions at the site.

It is not sufficient to utilize a program that calculates an experimental semivariogram and selects a
suitable model.  For good results, the modeler must evaluate the uncertainty of the data.  In many, if
not most cases, there is not enough data available to clearly and absolutely define the semivarigram,
but by incorporating the modeler's knowledge or expert opinion about the site, uncertainty may be
reduced, possibilities limited, and reasonable results may be identified.
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2.1: Introduction

FIGURE 2-1.

 

Borehole data used to interpret the subsurface may not provide a unique solution. In
this case, there are eleven data samples; six of fine-grained sediments with low hydraulic
conductivity, and five of coarse-grained sediments with high hydraulic conductivity.  Although data
for each map is identical, the nature of the geology in each map is substantially different. This
illustrates that there is uncertainty associated with the interpretation of the character of subsurface
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FIGURE 2-2.

 

Contaminants will migrate in different patterns within the two geologic models
presented in Figure 2.1.  It is important  to evaluate the probable alternative scenarios when

 

designing a remediation plan.
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2.2: Semivariograms

 

2.2:  Semivariograms

 

A semivariogram is a measure of the spatial correlation of a parameter.  Samples taken close
together are typically more similar than samples separated by larger distances. The semivariogram
represents this change in variance with increasing separation distance. The experimental

semivariogram (

 

γ

 

*(h)) is defined as:

 

(2.1)

 

for a particular lag distance (h), where N = number of data pairs in the search area, and z(xi) and

z(xi + h) are all the pairs of the N samples within the lag range, h.  The search area is defined using

a search direction and half angle.  The search direction is measured clockwise from North (or the
horizontal axis for a cross section) and defines parallel lines along which data of the given lag
distance must fall in order to be used in the calculation of the semivariogram (Figure 2.3a).  Often
data exhibit anisotropy, consequently the experimental semivariogram is calculated in a number of
directions.  The major axis of the anisotropy is indicated by the search direction of the
semivariogram with the longest range (range is the separation distance at which the semivariogram
value reaches the population variance and is discussed later).  Generally, few data will lie directly
along a search direction line, therefore a tolerance angle (defined as the search half angle) is used to
include data that are offset from the line (Figure 2.3a).  The maximum bandwidth also excludes
points that lie well to the side of the search direction.  It is useful to note that any search direction
accompanied by a search half angle of 90

 

°

 

 includes all combinations of orientations of points at
each spacing, thus is appropriate when evaluating data with an isotropic distribution.

The model semivariogram, 

 

γ

 

(h), is a function representing the experimental semivariogram.  The
distance at which the model semivariogram meets the data set variance is defined as the range
(Figure 2.3b).  The variance of the sample at a separation distance of zero is called the nugget
(Figure 2.3b).  This terminology arose in the mining industry where two assays from the same gold
sample would sometimes yield markedly different results due to the presence of a gold nugget in
one portion of the sample while another portion includes only disseminated gold.  The variance of
the entire data set is referred to as the sill (Figure 2.3b).

 

2.3:  Indicator Kriging And Stochastic Simulation

 

One approach for generating alternative subsurface interpretations is indicator kriging combined
with stochastic simulation .  Indicator kriging differs from simple or ordinary kriging in that a range
of parameter values are reduced to discrete indicators (integer values) by defining threshold values.
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For example, materials with hydraulic conductivity less than or equal to 1x10

 

-3

 

 may be defined as

indicator 1, materials with hydraulic conductivity greater than 1x10

 

-3

 

 and less than or equal to

1x10

 

-1

 

 may be defined as indicator 2, and materials with hydraulic conductivity greater than 1x10

 

-1

 

may be defined as indicator 3.  Indicator description makes it possible to krige qualitative

 

FIGURE 2-3.

 

Features of a semivariogram and parameters defining the search area (after Englund

 

and Sparks, 1988).
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2.3: Indicator Kriging And Stochastic Simulation

 

parameters such as lithology which could be defined as indicator 1 for silt, indicator 2 for silty-
sand, and indicator 3 for fine sand.  Suffice it to say, that MCIS allows the modeler to generate
multiple interpretations of the subsurface which are distinctly different, but honor all the original
data and honor the nature of the model semivariogram .  The modeler can use these simulations to
assess the uncertainty associated with the subsurface interpretation and to evaluate the affects of the
different possible geologic settings on contaminant migration.  However, if it is assumed that the
range of uncertainty of subsurface interpretations is completely defined by the process, then it is
assumed that the model semivariogram accurately represents spatial variation at the site.  This
assumption is not necessarily correct.

An experimental semivariogram based on the well data from Figure 2.1 is presented as Figure 2.4.

For simplicity in demonstrating concepts, only two indicators were employed, one for low
hydraulic conductivity materials and another for high hydraulic conductivity materials. Although
both models in Figure 2.1 share the same experimental data, semivariograms generated using many
data points selected from the two models (1750 points vs. 11 points) are substantially different
(Figure 2.5).  These semivariograms developed from the extensive data sets illustrate that use of
only one experimental semivariogram of the raw data may lead to inaccurate simulations.  The
actual experimental semivariogram (Figure 2.4) is based on very few points, and arbitrary, simple

 

FIGURE 2-4.

 

Experimental and modeled semivariograms developed from the eleven labeled data
points in Figure 2.1.  A great deal of uncertainty is associated with the modeled semivariogram

 

because of the limited number of data.
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assumptions (in this case, a search direction of 0

 

°

 

 with a 90

 

°

 

 half-angle).  When more restrictive
searches were analyzed (i.e. searches with different directions and smaller half-angles), it was not
possible to define anisotropy in the data.  That is, there are not enough data to develop convincing

 

FIGURE 2-5.

 

These experimental semivariograms based on 315 data points from the models in
Figure 2.1 were determined by overlaying a regular grid (25’ x 25’) on each model.  The
distribution of high and low conductivity materials in Figure 2.1a was determined to be isotropic
and is described by the model semivariogram in 2.5a.  In Figure 2.1b, the distribution is anisotropic
and the major and minor axes of the model semivariogram ellipsoid are shown in 2.5b and 2.5c
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2.3: Indicator Kriging And Stochastic Simulation

statistics to indicate a distinctly longer range is obtained by orienting the semivariogram in a
particular direction.  Based on the sample data only, using isotropic assumptions, a spherical model
was defined for the experimental semivariogram shown in Figure 2.4.  The model parameters are:

Spherical Model: 0° search direction, 90° half-angle

range = 170 feet
C1 = 0.273
C0 = 0.00

where C0 equals the nugget, and C1 equals the portion on the data set variance, not due to the
nugget.  This semivariogram, developed from the 11 data points, contrasts to the semivariograms
developed from the extensive data sets in Figure 2.5.  An extensive data set taken from the model
presented in Figure 2.1a yields a model semivariogram (Figure 2.5a) with the following
characteristics:

Spherical Model:    0° search direction, 90° half-angle

range = 190 feet  
C1 = 0.251 
C0 = 0.00

This model is similar to the semivariogram model determined using the field data and simple
assumptions, and though they are not identical, the simulated results would be similar.
Semivariograms developed from the extensive data set for the model shown in Figure 2.1b exhibit a
distinctly longer range for an orientation of 135°, yielding a selected model as follows:

(Major-axis) Two-Nested Spherical Model: 

135° search direction, 20° half-angle
a1 = 102 feet 
a2 = 390 feet
C1 = 0.131
C2 = 0.116
C0 = 0.0.

(Minor-axis) Spherical Model: 45° search direction, 20° half-angle

a1 = 48 feet
C1 = 0.247
C0 = 0.0.

where ai represents the range of each model nest, and C1 and C2 represent the non-nugget portion of
the data set variance for each nest.  Considering the character of the experimental semivariograms
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developed from the extensive data set taken from the model in Figure 2.1b, the validity of the
semivariogram model based on the limited field data and simple assumptions comes into question.
These semivariograms suggest that there may be an anisotropic structure in the model.  This
anisotropy cannot be identified based on the field data alone, and as a result, a multiple indicator
conditional simulation using the semivariogram of Figure 2.4 would not properly represent this
alternative interpretation.

The purpose of this example is to illustrate that much of the uncertainty in the kriging process is
directly accountable to the definition of the modeled semivariogram.  The difficulty, however is
that, at an actual site, sparse data often result in unsatisfactory experimental semivariograms . Two
techniques, jackknifing and latin-hypercube sampling, can be used to address the uncertainty
associated with the semivariograms.  In some cases, it may also be reasonable to bias the results
with expert opinion. Use of expert opinion in formulating semivariograms may lack statistical rigor,
but may be necessary to limit the possibilities.  Ground water hydrologists are hired for their
expertise; exercising it, as opposed to blindly following a statistical method which we know has
limitations, can improve results.  Of course, hydrologists must remember to keep an open mind
about the nature of the subsurface at a site and not assume the presence of trends nor assume a
simple pattern (such as that of Figure 2.1a as opposed to that of Figure 2.1b) without sufficient
observation.

2.4:  Jackknifing

A method for directly measuring uncertainty, error, or confidence limits associated with an
experimental semivariogram is not available, because for each lag, there is only a single calculable

γ*(h) value. γ*(h) is calculated as the mean of squared differences for a given lag.  Therefore, it is

not a mean, but a variance of the data for that lag.  Initially it may be thought that γ*(h) could be

bounded by estimating the variance of the squared differences about γ*(h).  However this is not
appropriate because this is the variance about a variance which is calculated, using exactly the same
data.  Not only is such an approach circular and inappropriate, but as should be expected, the

variance about γ*(h) increases with separation distance, yielding no useful information.  

To circumvent this problem, a process called jackknifing is used .  Jackknifing is a procedure where
the experimental semivariogram is calculated with one (or more) data point(s) removed from the
data set.  By repeating this procedure for every point in the data set, a series of n (n = number of

samples) experimental semivariograms is calculated.  For each lag distance there are now n γ*(h)

values.  Using these values, confidence limits can be approximately determined, for the mean γ*(h)
at a particular lag.  When these are plotted, the error bars define the possible range of the modeled
semivariogram (given a specific confidence level; 95% is used in this example).  The problem with

this method is that each mean value (γ*(h)) is correlated with the other mean values (γ*(h))
calculated at each specific lag (the same data, except for one point, is being used), therefore the
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2.4: Jackknifing

variance calculations are not strictly correct .  However, this technique is not being used to select
the best semivariogram model, which it cannot do .  Rather it is used to guide the modeler in
optimizing further data collection or identifying a likely range of reasonable model
semivariograms.

A semivariogram developed by jackknifing the eleven data points from the models in Figure 2.1
(using a 0° search direction with a 90° half-angle) is presented in Figure 2.6.  By examining the

error-bars, it can be seen that the modeled spherical range could vary from less than 70 feet to more
than 155 feet, but is probably less than 220 feet (error-bars are set at 95% confidence).  This
compares favorably with the experimental semivariogram shown in Figure 2.5a. 

The jackknifed semivariogram does not include the range exhibited in Figure 2.5b where the range
of the nested structures, 390 feet, is much greater than 220 feet.  This discrepancy occurs because
the jackknifed experimental semivariogram in Figure 2.6 is evaluated using all points separated by
a given lag distance regardless of their orientation (isotropic conditions were assumed).  When the
same search windows used to develop the semivariograms of Figures 2.5a and 2.5b are used to
develop the jackknifed semivariogram from the limited data set, there is a hint of the character of
Figures 2.5b and 2.5c (Figure 2.7).  A semivariogram developed using a search direction of 135°

FIGURE 2-6. Jackknifing the eleven data points indicated in Figure 2.1 allows evaluation of
uncertainty associated with the semivariogram.  The vertical error-bars define the 95% confidence
intervals for the mean γ*(h) of each lag.  The variance around the mean lag is represented by the
horizontal error bars.  Each data point represents 1 instance of a jackknifed experimental
semivariogram.  This experimental semivariogram is based on the assumption of an isotropic
material distribution.
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and a 40° half-angle (the initial search used 20° half-angle, but too few pairs were found to be
useful) is presented in Figure 2.7a.  The range of this semivariogram cannot be determined from the
data, but it is likely to be less than 500 feet (use of the extensive data set suggests the range is on the
order of 390 feet).  A semivariogram developed using the perpendicular search direction of 45° with
a 40° half-angle (the initial search used 20° half-angle, but again too few pairs were found to be

FIGURE 2-7. Although anisotropy cannot be identified by evaluating single semivariograms of the
eleven data points, anisotropic character is hinted at when the same data are jackknifed along
specified search directions.  For a search direction of 45°, the range is likely to be less than 100
feet.  In the 135° search direction, the range is likely to be greater than 150 feet, and possibly more
than 500 feet.  The anisotropy defined in Figure 2.5b-2.5c cannot be determined from the eleven
data points, but its possibility is indicated by the data.  Symbols are described in the caption of
Figure 2.6.
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2.4: Jackknifing

useful) indicates that the range in this direction is probably less than 120 feet (use of the extensive
data set suggests the range is approximately 48 feet). It would be difficult to justify these last two
experimental semivariograms, or to identify them without first knowing the exhaustive data set, but
the fact that even limited data contain a hint of the underlying structure is important.  

The jackknifed experimental semivariogram (Figure 2.6) also suggests that eleven data points are
not enough to correctly define the model semivariogram.  The data are not even sufficient to
determine if the drilling pattern is tight enough to be within the range of the local variance, as
indicated by the fact that the upper limit of the uncertainty bars associated with the smallest sample
separation falls above the total (population) variance (the sill).  This suggests that further drilling
(data collection) is required.  Given an increasing number of samples, the jackknifed lag variances
will decline (Figure 2.8), and ideally, a jackknifed semivariogram will appear more like that shown
in Figure 2.8c.  Unfortunately, uncertain semivariograms are the norm rather than the exception as
indicated by the work of Shafer and Varljen (1990), and the erratic nature of published indicator
semivariograms of lithology .   The lack of variation in the experimental jackknifed semivariogram
illustrated in Figure 2.8c allows the modeler to clearly define the model semivariogram.  If the
experimental jackknifed semivariogram of lithology at a site had the character of Figure 2.8c, it
could be argued that, too much money was expended collecting data; the semivariogram could have
been modeled adequately with fewer data (Figure 2.8b).  In this case, if jackknifed semivariograms
had been calculated while data were being collected, the characterization program could have been
terminated sooner or redirected to focus on collecting data to reduce uncertainty in poorly
characterized areas of the site (as indicated by areas of high kriging estimation error), as opposed to
collecting data that would further define the semivariogram, thus saving time and money.

2.4.1:  Additional Comments About Jackknifing

Several other concepts should be considered when using jackknifing in a semivariogram analysis.
First, because data points are being removed from the data set to calculate the experimental
semivariogram, the variance, and therefore the sill, will generally increase slightly.  Second, when a
single experimental semivariogram based on all the data is calculated, the results may appear to be
easily modeled.  However it is difficult to differentiate an experimental semivariogram that
represents the true nature of the site, from one that is the product of a fortunate lag selection.
Jackknifing provides error-bars which give the modeler insight on the level of confidence which can
be attributed to the modeled semivariogram.  Finally, jackknifing should not be considered for
every data set where the experimental semivariogram is poorly behaved.  Jackknifing
computationally is very expensive.  For N data samples, N + 1 semivariograms must be calculated.
As N increases by one, the computational effort to calculate a single semivariogram doubles.  As N
gets into the hundreds, particularly thousands, the time to compute the uncertainty for a single
experimental semivariogram could take days, weeks, or even longer.
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2.5:  Latin-Hypercube Sampling

Once the statistical distribution of experimental semivariograms has been calculated,
semivariograms can be fit through the zone defined by the error-bars.  The objective is not to make

FIGURE 2-8. When a substantial amount of data are collected, the experimental semivariogram
may be clearly defined.  In this jackknifed simulation, there is little uncertainty in the lag means,
and there would be little uncertainty in defining the model semivariogram.
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2.5: Latin-Hypercube Sampling

a single best estimate of the character of the subsurface (i.e. a single semivariogram), rather the
objective is to select model semivariograms representative of the range of possible conditions at the
site.  This range of semivariograms is used with the original data to conduct indicator kriging and
stochastic simulation to generate multiple interpretations of the subsurface.  One approach is to use
Monte-Carlo techniques and randomly select, for example, 100 model semivariograms that fall
within the range of reasonable solutions (Figure 2.9a).  This might appear reasonable, but, for

FIGURE 2-9. Reasonable models must be selected from the shaded region in 2.8a to represent the
“flavor” of the alternative interpretations of the data.  Four model semivariograms with a nugget
selected from the lower quartile of possible nugget values are shown in 2.8b.  The ranges of the four
semivariograms are selected to represent each of the quartiles of possible ranges.  Sixteen models
would be used to represent the distribution of semivariogram models for the isotropic case.
Symbols are described in the caption of Figure 2.6.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Latin-Hypercube Sampled Semivariogram Models

ga
m

m
a 

(h
)

Legend

Variance
Model
Variance @ confidence level
Jackknifed Experimental Model
Experimental Model (Full)
Valid Latin-Hypercube Model

0 100 200 300 400
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Distance (km)

ga
m

m
a 

(h
)



JACKKNIFING & LATIN-HYPERCUBE SAMPLING Wingle

18 T-4595:  Colorado School of Mines

example, expert opinion of conditions at the site may indicate that models generated with nuggets
approximately equal to the sill or ranges near zero are unreasonable or unrealistic, even though the
jackknifed experimental semivariogram in Figure 2.6 indicates such semivariogram models of the
site are possible interpretations. 

An alternative approach to random selection of a large number of possible semivariogram models is
to use latin-hypercube sampling.  This reduces the number of simulations required to insure that the
”flavor” of all alternatives is addressed .  For this example, one might suggest the nugget must fall
within one of four equiprobable regions, and the range also must fall within one of four
equiprobable regions. The actual nugget, or range within each region is then randomly calculated
(Figure 2.9b).  This allows sixteen model semivariograms to be calculated for an isotropic model.
For an anisotropic model, the direction and magnitude of the anisotropy can be restricted similarly.
This, however requires many more simulations.  If the anisotropy factor between the major and
minor axis is evaluated at four ratios (e.g. 1.0, 0.5 0.25, and 0.125 or some other ratios as
determined from jackknifing the data to obtain a semivariogram in the direction of the minor axis of
anisotropy), the number of semivariograms is increases to 64.  If the search directions, 0° to 180°,
are divided into four directions (0°, 45°, 90°, and 135°), the number of semivariograms is increases
to 256.

This approach can yield a daunting number of simulations, many of which will bear little
resemblance to one another if the data set is small.  Such a situation results in the obvious
conclusion that some data sets provide so little information about a site that more data should be
collected before further assessment is undertaken.  If the data are more abundant, the range of
possible models will be constrained, and the simulated models may represent a modest range of
possible subsurface interpretations.  If the jackknifed semivariogram has small error-bars, as in
Figures 2.8b and 2.8c, the entire process of using a variety of semivariograms for simulation of one
site can be omitted because the process is not likely to indicate a larger uncertainty associated with
the interpretation of such well characterized sites.

Recall that the objective of this approach is not to make a single best estimate of the subsurface
interpretation, but to evaluate the possible range of subsurface character based on available data.
From a purely mathematical approach this may be computationally intractable, however
incorporation of expert opinion into the process makes it possible to limit the reasonable
alternatives.

2.6:  Expert Opinion

Thus far, only mathematical techniques for describing the subsurface have been discussed, and only
field data from wells at the site have been used for interpretation of the subsurface configuration.
Two points are important to consider; 1) these mathematical techniques do not necessarily honor
geologic laws, and 2) hydrogeologists often know more about the site than the borehole data
suggest.
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2.7: Results

The process of stochastic simulation uses probabilities to estimate a value at a grid location.
Unfortunately, these probabilities are based on measured values near that location and,
consequently, geologically impossible configurations can be simulated.  For example, the “law of
original horizontality” and the “principal of stratigraphic superposition” are readily broken.
Eventually techniques that incorporate these concepts into stochastic simulation will be developed .
Until that time, such simulations must be identified, deemed unreasonable, and discarded.

Although creation of such geologic fallacies cannot be prevented with the current simulation
process, the simulations can be improved by incorporation of geologic knowledge from analog
sites.  An expert can infer more information about the site than is evident in the borehole data.  For
example, and expert may know that sand lenses in the area tend to be between 10 and 25 feet thick.
The borehole data at the site may be too sparse to determine this range of thickness, but knowledge
from analog sites in the area may render it reasonable to assign a range of 10 to 25 feet to the
vertical modeled semivariogram. Although such action is not based on data from the site,
knowledge of analogs adds information to (decreases uncertainty associated with) the simulation
process.  If the site is made of horizontally bedded alluvial deposits, there is no reason to run
simulations which assume the material distribution is isotropic.  In such settings, units are generally
continuous for greater distances horizontally than vertically.  The modeler may be able to confirm
the presence of layered anisotropy by demonstrating that semivariograms with different search
directions and limited half-angle and bandwidths have the potential to have different ranges. Even
if the indications are sketchy, due to scarcity of data, the modeler can limit the simulations to
produce only reasonable interpretations given the local geology.  Similarly, anisotropy may be
present in lateral directions and geologic knowledge of directional trends of lenses or channels may
be used to limit the number of orientations considered for semivariograms which will, in turn, limit
the number of simulations that must be undertaken.

There is little reason to evaluate solutions that are mathematically possible, but geologically
improbable.  Discarding geologically improbable solutions adds “bias” to the results that may have
to be defended later.  However omission of the bias means that we do not use all the information
available to us.  When expert opinion is used wisely, the bias is likely appropriate, and will speed
the site evaluation, thus limiting exploration and analysis costs.

2.7:  Results

Four examples are presented to illustrate the process of multiple indicator conditional simulation
using latin-hypercube sampling of a jackknifed experimental semivariogram.  The differences in
these simulations demonstrate the variability of subsurface interpretation that is obtained using the
limited data given in the example in Figure 2.1.

These simulations were created using the MCIS code ISIM3D .  The map area was modeled in two-
dimensions using a 50x35 grid, with ten foot square grid cells.
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Simulations resulting from use of the modeled semivariogram using the extensive data set (Figure
2.5a) are presented in Figure 2.10.  These simulations differ significantly from the model because

only the 11 data points were used to condition the simulation.  Simulations presented in Figure 2.11
are based on a model semivariogram (a1 = 115’, C1 = 0.25, C0 = 0.0) sampled from the jackknifed
experimental semivariogram shown in Figure 2.6.  Although neither simulation (Figure 2.11a or
2.11b) is identical to the model in Figure 2.1a, they are reasonable approximations considering the
limited data.  The simulation in Figure 2.11b is particularly close to the model of Figure 2.1a. The

FIGURE 2-10. These two simulations were generated assuming isotropy and using the model
semivariogram developed from the extensive data set and illustrated in Figure 2.5a.  The solutions
are a reasonable approximation of the map in Figure 2.1a.
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2.7: Results

appearance of the resulting simulation is rather insensitive to the choice of range (compare Figure
2.11 with Figure 2.10 which was generated using a range of 190’ vs. 170’).  Both the experimental
semivariograms (Figure 2.5a and Figure 2.6) were developed based on an assumption of isotropic
material distribution.    The simulations in Figure 2.10a and Figure 2.11a are also similar because

FIGURE 2-11. These two simulations were generated assuming isotropy and using a latin-
hypercube sample from the jackknifed model semivariogram (C0=0.0, C1=0.25, a1=115') developed
from the eleven data points and illustrated in Figure 2.6.  The solutions are a reasonable
approximation of the map in Figure 2.1a,  and are very similar to those generated in Figure 2.10.
Much of the reason that the simulations in Figure 2.10 and 2.11 are similar is that the same random
path through the grid was used to simulate 2.10a and 2.11a and another path was used to simulate
2.10b and 2.11b.
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the same random path (same random number seed) was used to generate all of the ’(a)’ simulations
in Figures 2.10-2.13.  A different path was used to generate the ’(b)’ simulations.  These isotropic

FIGURE 2-12. These two stochastic simulations were generated assuming anisotropy using the
jackknifed model semivariogram based on the eleven data points and illustrated in Figure 2.6. The
latin-hypercube technique was applied and these are two simulations of a potential 256, as
described in the text.  Even though the geologic models presented in Figure 2.1 are different, use of
jackknifing and Latin Hypercube sampling can produce both configurations from limited data.
These solutions are a reasonable approximation of the map in Figure 2.1b. Unfortunately, the
method will not indicate whether these simulations or the simulations in Figures 2.10 and 2.11 are
the most likely because the data are not sufficient to draw such a conclusion.
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2.7: Results

simulations bear little resemblance to the model in Figure 2.1b which is a viable interpretation of
the data from the 11 field measurements.  This inability to represent the full range of possible
interpretations is not unexpected. 

FIGURE 2-13. These two simulations were generated assuming anisotropy using the extensive
model semivariogram based on the extensive data set and illustrated in Figures 2.5b-2.5c.  The
solutions are a reasonable approximation of the map in Figure 2.1b, and are very similar to those
generated in Figure 2.12, indicating that extensive data are more important to determining the
character of the semivariogram than they are to conditioning the simulation.
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If expert opinion indicated that the site would be expected to exhibit the locally observed NW-SE
trend of high and low hydraulic conductivity deposits, then the simulations presented in Figures
2.10 and 2.11 could be assumed to be less probable.  They would be superseded by the probability
of occurrence of anisotropic representations of the site.  If such expert opinion were not available
the two alternative configurations would have to be considered equally likely to occur.  The two
simulations in Figure 2.12 were generated in the latin-hypercube sampling process, using one of the
semivariograms that would fall in the shaded area in Figure 2.9a with a range between 120 and 180
feet (third quartile estimate of range), a nugget between 0.0 and 0.061 (first quartile estimate of the
nugget), an anisotropy factor of (minor to major axis) 0.125, a major axis orientation of 135°, and
using different random paths through the grid.  Although they are not identical to the model in
Figure 2.1b, they mimic its nature.  When using the range, sill and nugget terms identified by the
semivariogram developed from the extensive data set (Figures 2.5b and 2.5c), the simulation results
(Figure 2.13) are not significantly different from the simulation results (Figure 2.12) obtained using
the jackknifed semivariogram (Figure 2.7), indicating that an extensive field sampling would not
improve the character of these simulations but might improve the certainty of occurrence of units
with a 135° orientation.  That is, more data will improve the certainty of the semivariogram having
a given orientation whereas the jackknife approach only indicates the possibility of units having
that orientation.  Of course, a larger data set improves conditioning of the simulations.

The simulations presented in Figures 2.10-2.13 demonstrate that correct definition of anisotropy is
important in order to capture the character of the site.  Similar results in paired simulations also
suggest that the differences in model ranges are less important than the assumption of isotropy.

2.8:  Conclusions

A great deal of uncertainty is associated with interpretation of the subsurface, and simulation
techniques are incapable of accounting for all the uncertainty if only a single deterministic
semivariogram model is utilized.  Typically there are not enough data available at hazardous waste
sites to adequately define a single model semivariogram in a rigorous statistical basis.

By jackknifing the data to determine a reasonable range of model semivariograms, and using latin-
hypercube sampling and incorporating expert opinion to limit the required simulations, the
uncertainty associated with the subsurface interpretation can be more completely assessed utilizing
a reasonable amount of simulations.  Unfortunately the uncertainty may be so great that little can be
concluded about site.  However, this is important information because it indicates that more data
must be collected before conclusions are made about the site.  Given one data sample, one can
begin to make interpretations of the site, but quantifying the uncertainty associated with those
interpretations is important.

The method presented herein is useful when a significant amount of uncertainty is associated with
the experimental semivariogram.  If the uncertainty is small, the process only adds unnecessary
work.  For small data sets, where there is significant uncertainty, this process may be the only way
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2.8: Conclusions

to correctly assess the potential variability of the subsurface, and evaluate potential flow paths for
contaminants.

Although the application considered herein pertains to indicator conditional simulation, evaluation
of the uncertainty associated with a semivariogram is important whenever a semivariogram is used.
Jackknifing is a practical tool for relatively small data sets, but for large data sets, the computational
intensity of the jackknifing process may make the process unmanageable.
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CHAPTER 3 VARIATION OF 
SEMIVRIOGRAM  MODELS 
WITH DIRECTION

When developing semivariogram models, it is often difficult to fit a model semivariogram to both
the principle-axis and the minor-axes using traditional methods with anisotropy ratios.  Currently a
single model (possibly nested) is modified with anisotropy factors; these represent the relative
range of the semivariogram for all three orthogonal axes.  This technique is restrictive, and this
discussion presents a method for relieving these restrictions by defining different semivariogram
models, independently for each axis.  These will be referred to as directional semivariograms.  The
process increases the kriging processing time by 80% to 200%, but the method offers the modeler
greater flexibility, and simulations or estimations that are more representative of the site, because
the spatial variation of the data can be more precisely defined.

3.1:  Introduction

Semivariogram modeling is the foundation for much geostatistical analysis, and can
also be the most difficult and time consuming portion of the analysis.  In part, this is due to the
computationally intensive calculations, but it is also due to the difficulty in defining semivariogram
models which reasonably honor the experimental semivariograms in the principle and minor search
directions.  With the current techniques that use anisotropy factors (Englund and Sparks, 1988;
Journel and Huijbregts, 1978; Deutsch and Journel, 1992), often it is not possible to model all the
orthogonal experimental semivariograms exactly.  Consequently compromises are required for the
definition of one, or even all of the models.  If the compromises are not too substantial, then this
approach is acceptable, because, generally the kriged results are relatively insensitive to minor
changes in the semivariogram.  Though this insensitivity offers some comfort, it is not particularly
satisfying.  

This chapter describes a procedure, which allows the modeler to define a unique
semivariogram model for each orthogonal axis of the experimental semivariogram.  The algorithm
uses components of each model to determine γ(h) values between the axes.  Anisotropy factors are
not used; rather the modeler specifies the number of nests, sill and range components, and model
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structure types independently for each axis.  The only requirements are 1) the nugget must be the
same for all models, and 2) the total sill must be the same at infinity.  These two requirements are
not particularly restrictive.  Requiring the nugget to be the same is reasonable, because at zero
distance, direction is irrelevant.  The requirement that the total sill components are equal ensures
that the kriging matrix is non-singular.  If different sills are desired, then this requirement is met by
defining an arbitrarily large range for the final nest to make up the balance of the sill component.
The error induced by the final nest has no affect on the area of interest.

This technique allows the modeler to honor the results of the experimental semivariogram analysis,
thus it is easier to model the data set and the results are more accurate.  However, the calculation of
γ(h) is substantially more complex than traditional methods, therefore the method requires
computational effort.  The additional effort is comparable to the computational effort required for
the search procedure and matrix solution portions of the kriging algorithm so, overall, the task is
only increased by about 80% to 200% (based on observed differences in computation time for
example data sets).  This is acceptable, because the semivariogram model preparation is simplified,
and the simulations or estimates should more closely honor the spatial statistics of the site.

3.2:  Previous Work

Many techniques have been developed to estimate values of a variable at locations between sample
points.  These techniques are all based on the assumption that properties at unsampled locations are
related to the properties at nearby points where samples have been taken.  Some techniques are
inaccurate due to assumptions related to the spatial variation and the relative importance of nearby
data.  For example, the inverse-distance method states that surrounding data (n = number of
samples) have less importance with increased distance:

 (3.1)

The rate (p) at which increasing distance (d) reduces the influence of a neighboring sample value
(xi) is subject to debate.  Various factors for p have been suggested; 1 (linear), 2, 1/x,  based on the
modelers previous experience with the technique, and its performance at similar sites.
Consequently the results are subjective.

Kriging eliminates much of this subjectivity by utilizing the semivariogram as the spatial weighting
function.  The variance of the data and the rate of change in variance with direction and distance
can be defined with the equation:
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 (3.2)

where γ(h) describes spatial variance of all data pairs separated by a distance h.  N is the number of
pairs separated by the distance h, and xi and xi+h are the values at two points in the pair.
Experimental semivariograms are complex, and for practical reasons are represented with one or
more functions selected from a limited number of model types (e.g. spherical, exponential,
Gaussian).  These models are used because they guarantee the matrices in the kriging solution will
be positive definite (i.e., the matrix is not singular).  Even with these constraints, the semivariogram
is a powerful mathematical tool for describing how a variable varies in space at a particular site.

Although semivariograms could be defined for an infinite number of directions, for practical
reasons, variation is only defined along the principle orthogonal axes (X, Y, Z), creating an
ellipsoid.  As defined here, the X-axis is equivalent to the direction with the longest range (the
principle axis), and the Y and Z-axes (orthogonal to X), have shorter, though not necessarily equal
ranges.  Although modeling and solving a more complicated system is theoretically possible, it
would be extremely expensive computationally.  To further simplify the solution, the
semivariogram models for the Y and Z-axes have traditionally been described using anisotropy
factors related to the X-axis.  This simplification is used extensively in current kriging models
(Deutsch and Journel, 1992; Gómez-Hernández and Srivastava, 1990), because it is
computationally efficient, however it compromises accuracy and requires more time of the modeler
when the same semivariogram model does not fit the experimental semivariogram in all directions.
The technique presented here allows the modeler to specify unique semivariogram models for each
axis.

3.3:  Theory

Two steps of the kriging process are modified to incorporate directional semivariograms into the
kriging algorithm: 1) the search for nearest neighbors, and 2) the calculation of the covariance
components of the kriging matrix.

The first step in estimating the value for a grid location is to find the influential neighboring points.
For isotropic situations the closest sample points are the best estimators.  For anisotropic situations,
the best estimators are those points with the smallest spatial variance calculated from the model
semivariogram (γ(h)).  Using anisotropy factors, the sample point locations are transformed to
equivalent isotropic space, using a simple transformation and rotation, based on the orientation of
the principle model axis, and the anisotropy factors of the minor-axes.  Once transformed, the
estimation variance is solely a function of the distance between the grid location and the sample
point, therefore γ(h) doesn’t have to be calculated.  Conventional techniques (Deutsch and Journel,
1992; Gómez-Hernández and Srivastava, 1990), use Pythagoras’ Theorem to find the closest points.
When directional semivariogram models are used, direction as well as distance is important. When
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different model equations, sills, and structures are used for the orthogonal axes, a simple
transformation and rotation is not possible, because the magnitude of γ(h) is not solely related to
distance (Figure 3.1).  For this reason, γ(h) must be calculated for each sample in the search

neighborhood, and those points with the smallest γ(h) values are the best estimators.

Once the most influential neighboring data points have been selected, the kriging matrix is solved
as usual, with the exception of the γ(h) calculation.  Again, for directional semivariograms, it is not
possible to transform points into isotropic space, therefore component of the individual axes must
be resolved.  Whether γ(h) is being calculated to determine the most influential neighbors or

FIGURE 3-1. When directional semivariograms are used, distance alone does not determine the
most influential neighboring points.  In this example, all points in the minor model axis direction
(b) that are separated by less than x2 (158 m) have smaller γ(h)’s than points separated by x1 (109
m) on the major-axis (a).  The same is true for x3 and x2 respectively.
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individual components of the kriging matrix, the same technique is used as described in the
following section.

3.3.1  Equation and Proof

Calculating γ(h) to determine the nearest neighbors for a grid location, or to define individual
components of the kriging matrix, requires the equation for an ellipsoid:

 (3.3)

Using this equation, it is possible to separate the components of each semivariogram model for any
vector (Figure 3.2). One point is translated to the axis origin, and the second point is positioned at
|x|, |y|, and |z|, along the separation vector (h).  Here a, b, and c, represent the maximum practical
ranges of the semivariograms model along the X-, Y-, and Z-axes respectively.  In this section only,
when the actual ranges are used the aactual, bactual, and cactual, subscripts will be used.  The practical
range refers to the distance where the semivariogram model meets the variance.  For the
Exponential and Gaussian models, this is defined as 95% of the variance.  The practical ranges for
different models are defined (Journel and Huijbregts, 1978): 

If the unadjusted range and not the practical range is used, the axis defined with the model using the
longest practical range will be under-weighted.  The equations for determining each component
γ(h)X,Y,Z and the resultant γ(h) are derived below. The components of each axis for each structure of
the nested semivariogram model can be related through the aspect factors:

f = a/b (3.4a)

g = a/c (3.4b)

p = b/c (3.4c)

Rearranging Equation 3.3, the ellipsoid factors a2, b2, and c2 for the search vector are solved:

 

Model  Type Practical Range

Spherical range

Exponential 3 x range

Gaussian sqrt(3) x range

Linear range

x

a

y

b

z

c

2

2

2

2

2

2 1+ + =

x

a

f y

a

g z

a

2

2

2 2

2

2 2

2 1+ + =



VARIATION OF SEMIVRIOGRAM MODELS WITH DIRECTION Wingle

32 T-4595:  Colorado School of Mines

(3.5a)

  (3.5b)

FIGURE 3-2. Directional semivariogram analysis components.
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  (3.5c)

Where a’, b’, and c’ represent the X, Y, and Z-axis intercepts for an ellipsoid passing through an
arbitrary point, (x, y, z) along the same vector, where the aspect rations defined by a, b, and c
remain true, the following relationships are also true:

 (3.5d)

 (3.5e)

 (3.5f)

An additional axis, R, is also required.  R is defined by the intersection of the X-Y plane, and the
vertical plane passing through the point (x, y, z).  To determine the semivariogram components, the
point r, which lies on the R-axis, vertically below the point (x, y, z) is defined:

 (3.5g)

Two additional points of interest are where the semivariogram model ellipsoid and the ellipsoid
passing through (x, y, z) cross the R-axis; these are d and d’ respectively. Defining these two
ellipsoids, with the aspect ratios described above, the components of each semivariogram model
can be derived.  One new aspect ratio is needed between the R- and Z-axes.

q = d/c (3.6)

The distances a, b, c, and d represent the practical model range and a’, b’, c’, and d’ represent the
practical component range along each axis for the point (x, y, z).  The parameter d represents the
semivariogram model along the R-axis and is a combination of models a and b.  Once a, b, x, and y
are known, then d can be determined.  For a circle, the angle f is described as: 

  (3.7)
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Usually, the model semivariogram ellipse (X-Y plane) will not be a circle, therefore the anisotropy
must be removed to determine the component angle f.  This is the product of y and the aspect ratio
of the ellipse (f in the X-Y plane, major/minor dimension):

 (3.8)

The components of a and b can then be described by dividing (90° - f) by 90°, and multiplying by b
and a, plus a:

(3.9)

 (3.10)

The components can then be summed to calculate d’:

 (3.11)

By expanding f and solving, using radians, the equation may be rewritten:

 (3.12)

d’ can be determined by proportion:

 (3.13)

Given distances a’, b’, c’, and d’, it is possible to solve directly for γ(a’), γ(b’), and γ(c’).  To solve
for g(d’actual), the argument is used for d is repeated,  The components of γ(a’actual) and γ(b’actual) can
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then be described by dividing (90° - f) by 90°, and multiplying by γ(b’actual) and γ(a’actual), plus
γ(a’actual):

 (3.14)

 (3.15)

The components can then be summed to calculate γ(d’actual):

 (3.16)

By expanding f and solving, the equation may be rewritten:

 (3.17)

To solve for γ(e’actual), where e’ is the distance from the origin to the point (x, y, z), steps similar to
those used to generate d and γ(d’actual) are required.  Allowing γ(d’actual) to be equivalent to
γ(a’actual), and γ(c’actual) equivalent to γ(b’actual), this yields:

  (3.18)

These calculation must be evaluated for each nest of the model structure except the nugget (γ(h)0).
The nugget, having zero distance, by definition is the same for all axes.  This also implies that the
number of structures in every direction must be equal.  This restriction can be negated by giving
undesired nests a zero variance component and the same range as the previous structure.  The final
γ(e’actual) estimate is the summation on the nugget and the nested structure components:
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 (3.19)

3.3.2: Positive Definite Matrix Issues

The models selected for the semivariogram, must yield a positive definite kriging
matrix (Journel and Huijbregts, 1978).  If the matrix is not positive definite, there may be no
solution or there may be several different solutions (Isaaks and Srivastava, 1989),  and the kriging
variance may be negative (Journel and Huijbregts, 1978).  The various model types used here
(spherical, exponential, Gaussian, and logarithmic) have proven to be positive definite both
individually and in combination as nested structures (Journel and Huijbregts, 1978).  Although the
equations are merged in a different manner for directional semivariograms than for traditional
kriging, it is assumed that the matrix remains positive definite.  In practice, several indicators used
to determine whether the matrix is not positive definite, are 1) matrices that are singular, 2) have
large positive or negative kriging weights (much larger or smaller then ± 1.0), and 3) the occurrence
of negative estimation variances.  Proving that the equations are positive definite is a difficult task
(Christakos, 1984; Isaaks and Srivastava, 1989), but in summary, for a symmetric (n x n) matrix to
be positive definite, it must satisfy any one of the following conditions (Burden and Faires, 1985;
Isaaks and Srivastava, 1989; Strang, 1988):

i) xtAx > 0 for all non-zero vectors x.

ii) All the eigenvalues (λi) of A are greater than 0.

iii) All the upper left submatrices Ak have positive determinants.

iv) All the pivots (di, without row exchange) are greater than 0.

for every n-dimensional column vector x ≠ 0, where A is the kriging matrix, Ak is a submatrix of A,

x is any vector (appropriately dimensioned), and xt is the transpose of x.

3.3.2.1: Problems With the Positive Definite Assumption

Some problems with large positive and negative weights and negative kriging
variances were encountered when Gaussian models were used with the directional kriging method.
Many of the problematic matrices were confirmed to be positive definite based on tests i) and ii).
The problems were attributed to the unstable nature of the Gaussian model with small nuggets
(Ababou, Bagtzoglou, et al., 1994; Posa, 1989).  Ababou, et al (1994), state that this is a common
problem, particularly with Gaussian models that have small nugget values.  The kriging matrix
becomes more unstable and approaches singularity at small h values.  This tendency can be
estimated using the kriging matrix (A) conditioning number κ(A):

κ(A) = |MAX eigenvalue| / |MIN eigenvalue|
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The Gaussian model, is one of the most problematic (2 to 14 times worse than hole-exponential
models (which are one of the best) (Ababou, et al., 1994)) and most unstable, and tends to have
minimum eigenvalues near 0.0.  Also, because the model is relatively flat at small h values (unlike
all other models), the problem prevails at larger h values than for other models (Posa, 1989).
Because of this instability, it is sometimes better to select a model which does not physically fit the
data as well as another model, but is more robust (Posa, 1989).

3.4: Modification of Algorithms

In this project, the GSLIB ktb3dm (Deutsch and Journel, 1992), and SISIM3D (Gómez-Hernández
and Srivastava, 1990; McKenna, 1994) algorithms were modified to build the kriging matrix using
both anisotropic semivariogram models and directional semivariogram models.

3.4.1:  Algorithm Constraints

Although directional semivariogram models relax many of the constraints in defining spatial
variation, there are several limitations.  Some of these limitations arise from  the theory, and some
from the implementation.  The limitations are:

• The number of semivariogram models for each axis must be equal.  This is a minor
limitation, because extra models can be added as needed with a zero variance
component, and a range equal to the final desired range.  If this is not done, there may be
ambiguity in how the semivariogram models are evaluated.

• The sill for all axes must be equal.  Again this is a minor limitation.  If the variance in
one direction is smaller than another in the grid area, the remaining variance component
may be added to the final nest, while the range for the final nest is set to a range much
greater than the size of the simulated area (or the search distance for that matter).  This
constraint is required to ensure positive definite matrix solutions.

• Gaussian models may be used with small or zero nugget values, but the modeler must be
aware that the results can be unstable.  The algorithm presented here tests for large (±)
weights and warns the modeler.  The algorithm can remove data points (the point
associated with the largest absolute kriging weight) from the kriging matrix until the
results stabilize, or until there are too few points to estimate the grid location, however
estimates resulting from such elimination should be considered highly suspect (See
Rocky Mountain Arsenal example described below), and one may wish to compromise
and use a larger nugget (often the problem with Gaussian models), or a different model
type all together.
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3.4.2:  Computational Cost

Although use of directional semivariograms is computationally intensive, the increased
computation, is significant, but not excessive.  In several test cases, the computation time increased
between 80% and 200%.  The increased computation occurs mainly in the search algorithm that
identifies the most influential neighbors for each grid location and in the additional overhead for
calculating each covariance value of the kriging matrix.

The search algorithm in the traditional technique includes two main steps: 1) transformation of the
sample data to isotropic space, and 2) calculation of the distance between each point and each grid
location being estimated.  In addition to these steps, the directional semivariogram technique
requires that γ(h) be calculated for each sample point, relative to the position of the grid position
being estimated.  To determine the neighboring points with the smallest spatial variances,
traditional techniques calculate only the relative distance between sample points in isotropic space,
and the point being estimated.  This is adequate, because the spatial variance is only a function of
distance.  When using directional semivariogram models, transformed isotropic distances are not
sufficient to rank sample points; direction is also important, thus γ(h) for the separation between
each sample and the grid location must be ranked.  Calculating γ(h) in the search phase, adds most
of the increased computational effort.

The calculation of γ(h) for the kriging matrix also requires additional effort.  Although this step is
generally less expensive in computation time than the search step because it is applied only to the
selected nearest neighbor points and not to all points within the search neighborhood.

To solve the kriging problem, the kriging matrix must also be solved using either Gauss elimination
or a more efficient LU decomposition (Alabert, 1987).  These calculations are unaffected by the
method used to define the semivariogram models, but because this is a computationally intensive
task, the increased cost due to directional semivariogram modeling is less severe.

3.5:  Examples

Several example models and data sets are used to demonstrate the applicability and validity of
using directional semivariogram models.

3.5.1:  Comparison With the Classic Method

In addition to the mathematical proof above, it is also important to demonstrate that the algorithm
and the software are correct.  Two approaches are pursued to evaluate the algorithm.  First,
conditions modeled using anisotropy factors with traditional methods are duplicated using
directional semivariogram models that mimic the anisotropy factors.  Then, model results using
directional semivariogram models, that cannot be described with anisotropy factors, are compared
with manual calculations.
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3.5.1.1:  Anisotropic Case: Directional Components Equivalent to Anisotropy Factors

To demonstrate that the directional semivariogram model technique produces the same results as
the conventional technique using anisotropy factors, a small synthetic data set with eleven data
points was created (Figure 3.3a).  Given equivalent model input, the results are identical.  The
semivariogram models for each case are:The principal axis is oriented to the Northwest.  The map

in Figure 3.3b is the traditional simple kriged map using a single semivariogram model with
anisotropy factors. Figure 3.3c was produced using directional semivariograms.  When the two
maps are subtracted from one another, the difference is zero at every grid location, indicating that
the directional semivariogram method is able to correctly reproduce the simple case where
anisotropic conditions exist and the perpendicular semivariogram models are related by anisotropy
factors.

3.5.1.2:  Anisotropic Case - Manual Solution

To demonstrate that the method produces the answers we intuitively expect, several g(h) values are
calculated manually for several points at various orientations with one model set (three orthogonal
directional semivariogram models). A second calculation will be made for the multi-nested model
defined in Figure 3.1.  The first model set is defined as:

for the points:

Method Axis Model Type Ramge Sill Nugget Y-Anisotropy

Anisotropic All Spherical 100 0.14 0.02 0.4

Spherical 250 0.11 0.75

Directional X Spherical 100 0.14 0.02 NA

Spherical 250 0.11 NA

Y Spherical 40 0.14 0.02 NA

Spherical 187.5 0.11 NA

Axis Model Type Range Sill Nugget

X Spherical 125 5 1

Y Gaussian 75 5 1

Z Spherical 30 5 1

Sample X Y Z

I 87 0 0

II 43 26 0

III 43 26 -11
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FIGURE 3-3. Example results confirming directional semivariograms can exactly mimic
anisotropy factors: a) sample data set, b) SK map using anisotropic factors, c) SK map using
directional semivariograms.
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the solutions are calculated:

I). For the point (87, 0 , 0), the solution is simple.  The point lies along a principal axis,
and in this case has a zero Y and Z component.  γ(h) can therefore be calculated
directly, using the standard spherical equation for the X direction:

 (3.19)

 (3.20)

 

 

 

where h is the separation distance, and r is the model range (for this equation only).

II). For the point (43, 26, 0), the first step is to define the nugget; γ(h)0 = 1.0.  Next the X
and Y directional components must be calculated (the Z axis has a zero component).
The X and Y intercepts of the ellipse that passes through (43, 26) and has an X/Y
aspect ratio of 125/75  (a/b) (remember the actual Gaussain range must be multiplied
by the to determine the practical ellipsoid range).  The intercepts, a’ and b’ are
determined using the standard equation for an ellipse (Equation 3.3):

 (using Equation 3.5a)
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b’ = 50.97

Given the X and Y intercepts, γ(h) for each ellipsoid axis is calculated:

 

 (3.21)

Note that the actual and not practical range is used to calculate γy(h)1.  Once the
maximum contributions for each axis have been determined, the component
contribution of each must be determined.  This is done by determining the effective
angle of the vector (43, 26) in the X-Y plane.  The effective angle is:

 

Given this angle, the components of γx(h) and γy(h) can be determined.  Intuitively
the X-axis component can be defined as:

 

and the Y-axis component is:

 

Adding the two components together yields a directional γ(h) of 2.499.  This yields
the same result as if Equation 3.18 were used:
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When the γ(h)i components are summed, the total estimate for γ(h) is 2.449 + 1.0
which equals 3.449.

III). The same approach may be used for the last point (43, 26, -11), γ(h)0 = 1.0, and the
X, Y, and Z directional components must be calculated.  The first step is to calculate
the X,  Y, and Z intercepts for the ellipsoid that passes through (43, 26, -11) and has
an X/Y aspect ratio of 125/75 , a X/Z aspect ratio of 125/30, and a Y/Z aspect ratio of
75 /30.  The intercepts, a’, b’, and c’ are determined using the standard equation for
an ellipsoid (Equation 3.3):

  (using Equation 3.5a)

a’ = 67.64

 (using Equation 3.5b)

b’ = 70.29

 (using Equation 3.5c)

c’ = 16.23

Given the X, Y, and Z intercepts, γ(h)1 for each ellipsoid axis is calculated:

 

γ πd h’

tan

. . . .( ) =

















−( ) + =

−

1

1
26

125

75 3
43

2

1 849 2 827 2 827 2 449

a’2 2
2

2
2

243
125

75 3
26

125

30
11= ( ) + 



 ( ) + 



 −( )

b’2
2

2
2

2
243

125

75 3

26
75 3

30
11= ( )







+ ( ) +






−( )

c’2
2

2

2

2
243

125

30

26

75 3

30

11= ( )






+ ( )






+ −( )

γ x h( ) = −








 =1

3

35 1 5
67 64

125
0 5

67 64

125
3 662.

.
.

.
.



VARIATION OF SEMIVRIOGRAM MODELS WITH DIRECTION Wingle

44 T-4595:  Colorado School of Mines

 

 

Using the same methods as described for point II, γd’(h)1 can be determined:

Now that the X-Y axis contributions have been merged, the Z-axis component is
incorporated.  This requires that d’ and r be calculated.  d’ is calculated by merging
equations 3.12 and 3.13:

 (3.22)

Similar steps are used in the vertical R-Z plane through (43, 26, -11) as were
undertaken in the X-Y plane,.  For purposes of calculating the vector length h, only
absolute values for each coordinate are used, and c’ and d’ are substituted for c and
d.  The angle f from R to Z is:
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Given this angle, the components of γd(h)1 and γz(h)1 can be determined.

 

and the Z-axis component is:

 

Adding the two components together yields a directional γ(h)1 of 3.531.  This yields
the same result as if Equation 3.23 were used:

 

When the γ(h)i components are summed, the total estimate for γ(h) is 3.531 + 1.0
which equals 4.531.

For the final example, the one and two-nested structure models shown if Figure 3.1 are used.  This
example demonstrates that the modeler is not required to specify the same number of model
structures in all directions.  Although the algorithm requires the number of structures to be equal,
the algorithm can internally add extra structures as needed without affecting the model description.
The calculations will be made for two points separated by 200m at a 45° angle (x = 141.1, y =
141.1).  The models are defined:
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Note that the number of structures are the same in both directions, but the East-West models second
nest has a zero sill (C) component.  As described in the earlier examples, the nugget is a constant
with direction, therefore γ(h)0 = 0.022.  The remaining γ(h)i values are calculated as follows
(geometric interpretations are shown in Figure 3.4):

a’1 = 231.9

 
b’1 = 178.4

 

For the second nest, there is no East-West component.  For the algorithm to work correctly, an
additional East-West structure must be defined (the number of structures for all axes must be
equal).  To satisfy the algorithm and the specified Gaussian model, a zero sill component is used,
and the range is set equal to the previous nest.  This manipulation satisfies the algorithm, and leaves
the model definition unchanged:
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FIGURE 3-4. Geometric steps for calculating directional semivariogram model defined in Figure
3.1.  The major axis is aligned North-South, and the minor axis is aligned East-West.  Note, the 45°
angle is transformed (-») based on the anisotropy of the ellipsoid.
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a’1 = 162.8

 
b’1 = 283.4

 

 

 

The final step is to sum the γd’(h)i components:

3.5.2:  Practical Applications

A synthetic and a field data set are used to demonstrate the effectiveness and usefulness of the
technique.  For the synthetic case, the same data set that was used in section 3.4.1.1 is utilized,
though different assumptions about the X and Y semivariogram models are made.  The field data set
is residual bedrock elevation data from the Rocky Mountain Arsenal, Commerce City, Colorado.
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3.5.2.1:  Synthetic Directional Semivariogram Demonstration Set

To demonstrate that directional semivariogram models can have a significant impact on model
results, the data set in Figure 3.3a is used, but in this case anisotropy factors are not used, rather
directional semivariogram models are defined.  Since this is a synthetic data set, none of the
following models can be argued to be the best representation of site conditions, any more than the
other models, but the exercise demonstrates that directional semivariograms offer great flexibility in
adjusting the estimations to match perceived or measured site conditions.  Three different site
scenarios were calculated based on the following directional semivariogram models (Figure 3.5):

The ranges of the exponential and Gaussian models are significantly different from the spherical
model ranges used for the Y-axis (40m and 187.5m for two nests) in Section 3.4.1.1.  The range of a
exponential and Gaussian model must be multiplied by the following factors to yield the equivalent
spherical range (Deutsch and Journel, 1992):

Despite these rules of thumb, the range for the scenario III Gaussian model was set to 1/3 of the
two-nested Spherical model’s range.  This configuration more closely resembles the original and
alternate Y-axis models (Figure 3.5, the climbing limbs of the models are more similar, even if the
full Gaussian range is somewhat reduced).  These models, are oriented with their major axes to the
Northeast.  In Figure 3.6a, the structures for the minor axis were substituted with Gaussian and
Exponential models.  In Figure 3.6b, the sill terms for the first structure in the minor axis (Y) was
lowered to 0.7, and the sill for the second structure was raised to 0.18.  Finally, in Figure 3.6c, the
minor axis was substituted with a single Gaussian model (sill = 0.25, a second structure with a 0.0
sill component is assumed by the algorithm).  The estimations (Figure 3.3a,b, and Figure 3.6a-c)
show the same general NE-SW trend, but vary in detail.  The differences are easiest to see near the

Scenarios Axis Nest Model Type Range Sill Nugget

I X 1 Spherical 100 0.14 0.02

2 Spherical 250 0.11

Y 1 Gaussian 23.1 0.14 0.02

2 Exponential 62.5 0.11

II X 1 Spherical 100 0.14 0.02

2 Spherical 250 0.11

Y 1 Gaussian 23.1 0.07 0.02

2 Exponential 62.5 0.18

III X 1 Spherical 100 0.14 0.02

2 Spherical 250 0.11

Y 1 Gaussian 62.5 0.25 0.02

Model Tyoe Practical Range (a)

Exponential 3a

Gaussian a(sqrt(3))
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peaks at (100,300: in red), the valley depressions near (425, 210: in blue), and the slope transition at
(70, 130).   Although Figure 3.3b, and Figures 3.6a through 3.6c appear similar to each other, the
mean absolute differences are as much as 7%, and differences between individual cells are up to
37% (Figures 3.7a, 3.7c, and 3.8), when compared to the kriged mapped using anisotropy factors
(Figure 3.3b).  These scenarios demonstrate how the use of directional semivariogram model
descriptions impacts the resulting maps, relative to a scenario which utilizes a compromise
semivariogram model with anisotropy factors.

3.5.2.2:  Rocky Mountain Arsenal Demonstration Data Set

To demonstrate the effectiveness, and some of the difficulties, of directional kriging, a data set of
bedrock surface elevations (actually residuals from a second-order trend-surface) from the Rocky
Mountain Arsenal (RMA), Commerce City, Colorado is used.  With this data set, use of correct
directional semivariogram models reduced the average estimation variance over the map area, even
though an artificially large nugget was used.  Because of problems with the Gaussian

FIGURE 3-5. Semivariogram models used for synthetic directional semivariogram data set. Despite
the general rule of thumb that the practical Gaussian range to a spherical range (a) is the SQRT(3)
multiplied by the range (a), the Gaussian (range (a) x  SQRT(3)) model, because it mimicked the
general nature of the other models more closely.
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FIGURE 3-6. Results of directional semivariogram models using different assumptions about
major and minor semivariogram models.
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FIGURE 3-7. Differences between original SK models (Figure 3.3a-b), and directional
semivariogram models (Figures 3.6a-c).
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semivariogram model, the nugget term was increased by 260% to stabilize the kriging matrix
(Gaussian models can cause singular matrix problems with small nuggets (Ababou, et al., 1994;
Posa, 1989)).

3.5.2.2.1:  Background

Johnson (1995) had trouble evaluating this site due to constraint related to the semivariogram
model definition.  She recognized directional differences in spatial statistics, but anisotropy factors
would not allow her to model them correctly.  As a result, Johnson compromised with a two-nested
spherical model.  It is important that the RMA be modeled accurately, because, summarizing
Johnson (1995), there are many serious environmental concerns:

The RMA was established in 1942 for the production of chemical and incendiary
munitions.  From 1947 to 1982, herbicides and pesticides were also produced
(Environmental Science and Engineering, 1987).  During this time chemical agents, such
as levinstein mustard (H), phosgene, napalm, isopropylmethyl fluorophosphonate (Sarin
or GB), and dichlorodiphenyltrichloroethane (DDT) were produced (Harding Lawson
Associates, 1992).  Problems arose at the site because liquid wastes were disposed of in
lined and unlined evaporation basins, and waste was initially held in settling ponds or
transported by sewer or drainage ditch to the basin (Kuznear and Trautmann, 1980).  By
the 1950’s the effects of ground water contamination were noted; there was high
waterfowl mortality and extreme crop loss (Harding, Lawson, et al., 1992).  By 1974,

FIGURE 3-8. Distribution of differences between original SK models (Figure 3.3a-b), and
directional semivariogram models (Figures 3.6a-c).
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disopropylmethylphosphonate (DIMP) and dicyclopentadiene (DCPD) contamination was
detected off site (Environmental Science and Engineering, 1987).

Johnson (1995) investigated potential transport routes for contaminants from the RMA.  To
accomplish this, Johnson (1995) identified and simulated (using conditional indicator simulation)
paleo-river channels, coarse and fine sediment distribution,  and the ground water surface.  The
paleo-river channels are of interest because they provide potential pathways for ground water and
contaminant movement.  To identify these paleo-river channels Johnson (1995) simulated the
bedrock surface using boring data from 842 wells.  This bedrock surface was identified as an
ancient erosional surface which dips slightly to the Northwest towards the Platte River (Harding, et
al., 1992).  

In Johnson’s (1995) work, the regional dip was removed from the bedrock data using a second-
order trend-surface.  Using the residual data, Johnson performed semivariogram analyses and
conditional simulation.  A problem arose during the semivariogram analysis; the experimental
semivariograms in the minor and major search directions couldn’t be modeled well using a single
model semivariogram with anisotropy factors.  As a result, compromises were made in selecting
semivariogram models (Figure 3.9a) with the hope that, by honoring the short lag data, errors
would be acceptably small.

3.5.2.2.2:  Directional Semivariogram Kriging

The directional semivariogram kriging technique was to used separate the directional components
in semivariogram models.  The full series of simulations presented by Johnson (1995) is not
repeated here, but the new estimates of the bedrock surface honor the spatial distribution of the data
better than the estimates made by Johnson (1995).  This is accomplished by using simple kriging
and evaluating the estimation variance.  The estimation variance is a function of the data locations,
and the differences between ordinary kriging and indicator kriging, do not effect the estimation
variance.  It is important to note that the estimation variance only provides a comparison of
alternative data configurations; it is independent of the data values (Deutsch and Journel, 1992). 

Four semivariogram models were evaluated: (I) one is similar to Johnson’s (1995) two-nested
spherical-spherical model with anisotropy factors, but an improved model with a lower mean
square error (MSE) is used (Figure 3.9a); (II) another is an accurate directional spherical-spherical
/ Gaussian model (Figure 3.9b); (III) a second directional model based on II, but with a much larger
nugget to accommodate difficulties with the Gaussian model is used (Figure 3.9c), and finally (IV)
another two-nested spherical-spherical model with anisotropy factors, but an appropriate nugget is
used (Figure 3.9d).  The semivariogram models are summarized in Table 3.1.

Model I fits the major-axis (East-West) well, but its spherical-spherical structure is not able to
represent the inflection in the early portion of the minor axis (North-South) experimental
semivariogram.  This model assumes a zero nugget.  When this model is used with Simple Kriging
on the site data (Figure 3.10a), using a 50 by 50, two-dimensional grid, the smallest estimation
variance results of all the semivariogram models are obtained.  The kriged surface and estimation
variance are shown in Figures 3.10b-c.  It is thought that this model underrates the estimation
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variance due to the zero nugget.  It is clear that the nugget has a γ(h) value of approximately 16
(Figure 3.10b).  This incorrect assumption is corrected with model IV.

Model II (Figure 3.9) has the best fit of the four models evaluated, based on MSE measurements of
the experimental semivariograms.  The fit is particularly good for the minor axis.  The MSE for this

FIGURE 3-9. Experimental and model semivariograms for RMA bedrock residuals (2nd order
trend removed): a) anisotropy factor model optimized to minimize MSE based on Johnson (1995),
b) optimized minor-axis fit with Gaussian model (note MSE reduced by 82%), c) minor-axis
Gaussian model fit with elevated nugget to reduce kriging matrix instability, d) anisotropy factor
model optimized to minimize MSE, but also honor nugget defined in b).
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axis model is only 12% to 25% of all the other models evaluated.   From this model, it was
concluded that the nugget has a γ(h) value of 16.0.  Due to theoretical problems with Gaussian
models and the small nugget (less than 10% of the variance) associated with these data, this model
has no acceptable solution.  Many individual grid cell kriging matrices are singular, or have huge
kriging weights (weights greater than ±1.05 were considered unacceptable; weights greater than
±200 were found).  Regrettably, this behavior is inherent with the Gaussian model, but increasing
the nugget increases the stability of every matrix solution (Ababou, et al., 1994; Posa, 1989).

Model III (Figure 3.9c) was developed in an attempt to stabilize the solution, without completely
compromising the model results, the nugget was increased until there are no singular matrices or
individual kriging weights greater than 1.05 (this allows for some negative kriging weights).  To
attain this, the nugget was increased to 39.0 (a 244% increase); this is still only 8% of the data set
variance.  The kriged bedrock surface and estimation variance are shown in Figure 3.11a-b.  The
average estimation variance is significantly larger for this model than for model I.  The difference
between the estimation variances (Model III - Model I) are shown in Figures 3.11c and 3.12a.  The
estimation variance for model III, on average, is 12.7% larger than the estimation variance for
model I, but this is not a reasonable reflection of model quality, because the results of model I do
not account for the variance due to the nugget.

Model IV (Figure 3.9c) is a modification of model I and accounts for the nugget (although not
exaggerated as is necessary for the Gaussian model (III)).  The kriged surface and estimation
variances are shown in Figure 3.13a-b.  The difference between the estimation variances (Model III
- Model IV) are shown in Figures 3.13c and 3.12b.  Now that the nugget is included, it is reasonable
to compare the results of using the traditional anisotropy factor model, to those obtained by using
the directional semivariogram model approach.  Even though model III has increased the nugget by
244% to stabilize the Gaussian model, the mean difference in the estimation variance between
models III and IV is -5.20%.  This implies model III’s (the directional models) results are better, or
at least less uncertain, than the results from model IV.  A Q-Q (quantile-quantile) plot is also shown
in Figure 3.14 comparing the original (I) estimated residuals vs. each of the other models.  It shows

Model Axis Model Tyoe Range Sill Nugget Y-Aniso MSE

I X/Y Spherical 4400 234 0 1.833 943/767

Spherical 11000 246 0.780

II X Spherical 4400 201 16 NA 911

Spherical 11000 262 NA

Y Gaussian 2806 466 16 NA 136

III X Spherical 5330 224 39 NA 1270

Spherical 12480 217 NA

Y Gaussian 2874 441 NA 509

IV X/Y Spherical 4400 226 39 1.833 987/1060

Spherical 11000 238 16 0.780

TABLE 3.1. Alternative semivariogram models for RMA residual bedrock surface.  Range, 
sill, and nugget terms are in feet.
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that the results are similar in all models.  Each model generates a similar number of sample values
in each of 100 quantiles, but by fine tuning the semivariogram models the estimation variance can
be reduced without making any dramatic changes in the overall model statistics.

FIGURE 3-10. Location of sample wells at RMA (a), SK map of bedrock elevation residuals (b),
and estimation variance using an anisotropy factor, spherical-spherical semivariogram model I (c)
(Johnson, 1995).
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In this example, if the nugget is accounted for, the directional semivariograms yield a better result,
even when the nugget was artificially exaggerated only for the directional model to prevent
problems associated with use of the Gaussian model.  In some cases though, unstable models (such
as Gaussian) may make the use of directional models undesirable, even when they would, at first,
appear justified.  As Posa (1989) argues, and his conclusion is supported here, it is sometimes better

FIGURE 3-11. RMA SK map of bedrock elevation residuals (a), and estimation variance using
robust Gaussian factor semivariogram models (b), and difference between robust Gaussian (b) and
original (Figure 3.10c) estimation variance maps (c).
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3.5: Examples

to use a semivariogram model which is not as physically correct, but which is numerically more
robust (i.e. a spherical model).

The main problem with implementing directional semivariograms, in this case, was related to the
instability in the kriging matrix resulting from theoretical problems associated with using a small
nugget and a Gaussian semivariogram model.  This, however is a general problem for all kriging
methods, and should not reflect adversely on the directional semivariogram method.

FIGURE 3-12. Distribution of differences between alternative estimation variance maps: (a) the
difference between the robust Gaussian (III) and the anisotropy factor, spherical-spherical
semivariogram model (I); (b) the difference between the robust Gaussian (III) and the anisotropy
factor, spherical-spherical semivariogram model with nugget (I).  The positive, average difference
in (a) indicates the Gaussian model has a higher average estimation variance. The negative, average
difference in (b) indicates the Gaussian model has a lower average estimation variance.
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FIGURE 3-13. RMA SK map of bedrock elevation residuals (a), and estimation variance using the
anisotropic factor spherical-spherical semivariogram model with a valid nugget (IV) (b), and
difference between the robust Gaussian (III) (Figure 3.10c) and estimation variance maps (b).
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3.6: Conclusions

3.6:  Conclusions

This chapter demonstrates that better definition of the experimental semivariogram, yields results
which better honor the spatial statistics of the sample data.  This is illustrated by reduced estimation
variance when factors other than model definition are removed.  This is accomplished by defining
unique model semivariograms along each of the three principle axes of the semivariogram model
ellipsoid.  In addition to improving the results, the procedure also makes it easier to model

FIGURE 3-14. Q-Q plot of bedrock elevation residuals where the original Spherical model using
anisotropy factors (I) is compared versus 1) the original Gaussian model (II), 2) the robust
Gaussian model, and 3) the original Spherical model adjusted with a nugget.  The plot suggests that
the general nature of all the models are similar.
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experimental semivariograms, because one need not compromise when selecting model types and
sills for each axis. There is an increase in computational effort which increases total processing
time in this study (observed times increased 80% to 200%), but this cost is relatively minor when
compared to the total time the modeler spends developing semivariogram models.  Overall, use of
directional semivariogram modeling requires some additional computational time, but modeler
effort is reduced, and most important, a significant increase in accuracy may be attained.
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CHAPTER 4 CLASS VS. THRESHOLD 
INDICATOR SIMULATION

With traditional discrete multiple indicator conditional simulation, semivariogram models are
based on the spatial variance of data above and below selected thresholds (cut-offs).  The spatial
distribution of a threshold is difficult to conceptualize.  Also, in some cases, ordering of the
indicators may influence the results, and changing the arbitrary order, to test sensitivity of the
results to the order, involves a substantial effort.  If the conditional simulations instead are based on
the indicators themselves, rather than the thresholds separating the indicators, then the spatial
statistics are more intuitive, and reordering the indicators is a trivial endeavor.  When class
indicators are used, the indicator order can be switched at any time without recalculating the
semivariograms.  If thresholds are used, and the ordering is changed, all the semivariograms must
be recalculated.  Despite the significant difference in methods, the model results are nearly
identical. 

4.1:  Introduction

In traditional Multiple Indicator Conditional Simulation (MICS), the kriged model results are based
on semivariograms describing the spatial distribution of the cut-off’’s between indicators.  The
affect of the order of the indicators on the resulting realizations is rarely evaluated even though the
numerical order is arbitrary.  For traditional simulation, the estimated indicator at a location is
based on the probability that the location is below each threshold or cut-off (the number of
thresholds equals the number of indicators minus one).  A more intuitive approach is based on
calculating the probability of occurrence of each individual indicator.  This chapter presents a
technique which uses semivariogram models based on individual indicators (classes), as opposed to
the traditional threshold semivariograms which are based on all the indicators below a cut-off
versus all the indicators above the cut-off.  

These differences can be described mathematically as follows.  Where the data set has been
differentiated into a finite number of indicators, it is possible to define a random function (Z(x))
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whose outcomes will have values in the range zmin to zmax.  From the definition of the indicators, K
thresholds can be defined (K + 1 equals the number of indicators) where:

(4.1)

The  random variable Z(x) can then be transformed into an indicator random variable I(x:zk) by:

(4.2)

The first moment of the indicator transform yields :

(4.3)

where E{I(x:zk)} is the expectation of I(x:zk), and P{Z(x) ≤ zk} and P{Z(x) > zk} are the
probabilities Z(x) is less than or greater than the threshold zk.  This equation is equivalent to the
univariate cumulative distribution function (CDF) of Z(x).  For classes, similar equations can be
defined.  Classes (ci) are equivalent to the indicators defined using thresholds in equation (4.1); they
can also be defined by:

(4.4)

Once the classes are defined, the random variable Z(x) can then be transformed into an indicator
random variable I(x:zk) by:

(4.5)

and the first moment of the indicator transform yields:

(4.6)
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4.1: Introduction

Here, instead of this defining the univariate CDF, the univariate probability distribution function
(PDF) is defined.  By summing the PDF components though, it can to converted into the univariate
CDF defined by equation (4.3).

Because the equations to define the class or threshold expectation are fundamentally the same, the
class method generates realizations that are equally accurate to threshold realizations, but it has two
main advantages.  First, it is easier to conceptually relate the model semivariograms to the spatial
distribution of the materials.  When class semivariograms are calculated, the range reflects the
average size of the indicator bodies (Figure 4.1): 

where as, the threshold semivariograms represent the distribution of indicators above or below a
threshold:  

and these can be difficult to conceptually relate back to the original data in complex geologic
settings.  It is important to note, that the first and last class and threshold semivariograms will
always be identical (they are based on equivalent indicator sets (0’s and 1’s)).  The intermediate
semivariograms, though may vary substantially.  The intuitive sense for the threshold
semivariogram range also tends to decrease with an increasing number of indicators.  Class
semivariogram ranges though, still reflect the average size of the indicator body.  The second
advantage to using classes is that sensitivity to indicator ordering can be evaluated without
developing additional semivariogram models. If thresholds are used, the full suite of threshold
semivariogram models must be recalculated for each reordering.  The class approach does have
several disadvantages: 1) more order relation violations occur (discussed later), 2) it is
computationally more expensive (one additional kriging matrix must be solved per grid cell), and 3)
it requires one additional semivariogram model (the number of class semivariograms equals the
number for thresholds, plus one).  The last two items are only an issue, if ordering sensitivity is not
a concern.  If sensitivities are a concern, preparation for the threshold method requires far more
human effort and computer time to develop the additional semivariogram models.

Class Horizontal Range

Silt 112

Silty-Sand 106

Sand 60

Gravel 41

Threshold Horizontal Range

Silt vs. (Silty-Sand, Sand, & Gravel) 112

(Silt & Silty-Sand) vs. (Sand & Gravel) 68

(Silt, Silty-Sand, & Sand) Vs. Gravel 41
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4.2:  Previous Work

The ”best-estimate” of the conditions at a site may not necessarily be a realistic interpretation of
actual site conditions.  By their nature, estimation techniques such as Ordinary Kriging, are
averaging algorithms  which smooth much of the true site variability (Figure 4.2).  To address this
issue and develop a technique that would both honor the data and their spatial statistics, conditional
(constrained by field data) simulation techniques were developed .  These techniques use a
probabilistic (Monte-Carlo) approach to estimate site conditions.  When estimating a value for a
particular location, the probability that the value is less than each threshold is determined, a random
number is generated, and an indicator value is assigned based on that random number.  As a result a
single ”realization” will retain much of the variability exhibited by the field data, but a single
”realization” may be a poor representation of actual site conditions.  When using simulation
techniques, many models must be calculated; each preserves the nature of the spatial data, but each

FIGURE 4-1. Spatial distribution of several indicators.  Defining semivariograms based on
indicator classes is more intuitive, because the range reflects the average size of the indicator
bodies.  The class semivariogram model ranges are: silt = 112m, silty-sand = 106m, sand = 60m,
and gravel = 41m.  For thresholds, semivariogram model ranges are: silt vs. all others = 112m, silt
and silty-sand vs. sand and gravel = 68m, and gravel vs. all others = 41m.
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has a random component. When grouped together (assuming an adequate number of simulations
are run), the average result is, in theory, the same as a ”best-estimate” kriged map.  

Several different varieties of conditional simulation are commonly used.  Some are based on
continuous data (e.g. contaminant concentrations; Deutsch and Journel, 1992), and others on
discrete data (e.g. geologic units; Deutsch and Journel, 1992).  A simple example to distinguish the
two methods is to consider two points representing two different indicators (1 and 3).  If an estimate
for a point mid-way between the indicators is desired, the results can be quite different depending
on which method is used.  If a continuous simulator is used, the result would be the average, or
indicator 2.  If the indicators represent concentrations (indicators #1 = 1 ppm, #2 = 10 ppm, and #3
= 50 ppm) the result is reasonable.  If the indicators represent geologic units (indicators #1 = clay,
#2 = sand, #3 = basalt), the averaged solution does not have a physical basis (sand it not
intermediate to clay and basalt).  Discrete simulation should be used for the latter case, and the
result would be either indicator 1 or 3.  If continuous data are used, either simulation approach can
be applied, but only discrete simulation is considered in this chapter.

Indicator simulation requires that one or more semivariogram models be calculated; one for each
threshold (sometimes a single median semivariogram model based on the median sample value is
applied to all thresholds .  To estimate a value for a particular location, the distance, direction, and
value of the neighboring samples is used to determine the probability that the estimate will be less
than each threshold.  This process generates a cumulative density function (CDF).  Once the CDF is

FIGURE 4-2. Ordinary Kriging (and most other estimation methods) tends to average or smooth
data to achieve a best linear unbiased estimate (BLUE) of reality.  Indicator Kriging with
conditional simulation provides a means for modeling the variability observed in nature, while still
honoring the field data.  Conditional simulation does not produce a best estimate of reality, but it
yields models with characteristics similar to reality. When multiple realizations are made and
averaged, values will approximate the smoothed, BLUE.
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calculated, a random number is generated, and for that realization, a specific estimate is selected.
Class and threshold indicator kriging generate the CDF in different ways as shown in Figure 4.3.  A

random path is followed through the grid (Figure 4.4), because, unlike ordinary kriging methods,
previously estimated values are treated as hard data samples and influence subsequent estimates.
Finally, to perform a full analysis of a site, many realizations (the resultant map from one

FIGURE 4-3. Class and threshold indicator kriging generate the cumulative density function (CDF)
in different ways.  Threshold CDF’s are determined directly from the probability that the specified
grid location is less than each threshold level (a).  The final CDF term should be less than 1.0 with
the remaining probability attributed to the final indicator.  Calculating class CDF’s requires two
steps.  First the probability of occurrence of each class is calculated (b). The PDF is converted into
a CDF by summing the individual PDF terms (c).  Ideally the probabilities will sum to 1.0.  For
both the threshold and class approaches, a random number between 0.0 and 1.0, is generated to
determine the estimated indicator for the cell.  From the random number (e.g. 0.82), a horizontal
line is drawn across to the CDF curve, an a vertical line is dropped from the intersection, to identify
the indicator estimate (5).
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4.3: Methods

simulation) must be generated, because each realization represents only one possible interpretation;
not the best or most likely interpretation.

4.3:  Methods

Two steps of the simulation process are modified in order to use classes rather than thresholds for
simulation.  First, indicator semivariograms are calculated based on the individual indicators rather
than thresholds, and second, the indicator kriging algorithm defines the kriging matrix based on the
probability an indicator occurs, as opposed to the probability that the location being estimated is
below a given threshold.  These changes were incorporated into an existing computer program,
SISIM3D .

FIGURE 4-4. This illustration shows the step wise manner in which a grid is kriged using Indicator
Kriging in conjunction with stochastic simulation.  Grid cells containing sample data (hard data
and some types of soft data) are defined prior to kriging.  Once these points are defined, the
remaining cells are evaluated.  To krige an unestimated cell, a random location is selected,
evaluated and redefined as a hard data point, then the next undefined cell is randomly selected.
This cell selection and estimation process is continued until all grid cells have been visited and
defined.
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4.3.1:  Semivariogram Calculation

To calculate a traditional indicator (“threshold”) semivariogram, an individual threshold or cut-off
is selected (Journel and Huijbregts, 1978).  All values below the cutoff are assigned a 1, and values
above the cutoff are assigned a 0.  When using “class” semivariograms, data locations with sample
values that equal the indicator value being simulated are set to 1,  the remaining values are set to 0.
The class approach differs from threshold approach in that both a low and a high cut-off are
defined.

4.3.2:  Data Definition

The hard and soft data labeling conventions are defined differently for class and threshold
simulations.  For both approaches, each data point is transformed into an indicator mask composed
of 0’s and 1’s (some soft data may have an associated probability distribution reflecting a weight
between 0 and 1, for a particular class or threshold level).  Using traditional methods, the mask is
set to 0 if the data value is less than the specified indicator threshold, and the mask is set to 1, if the
data value is greater than the specified indicator threshold.  For example, hard data with the
indicator order basalt, clay, silt, sand, gravel, and cobbles, would have the following traditional
indicator masks:

Basalt = 11111
Clay = 01111
Silt = 00111
Sand = 00011
Gravel = 00001
Cobbles = 00000

There is one less mask (5) than there are indicators (6).  For class semivariograms, the mask
indicates whether the data point is (1) or is not (0), the specified indicator.  For the same example
given above, the masks would be:

Basalt = 100000
Clay = 010000
Silt = 001000
Sand = 000100
Gravel = 000010
Cobbles = 000001

Using the class method, the number of masks equals the number of indicators.    

Soft data are those associated with non-negligible uncertainty. Three different soft data types are
summarized below:

• Type-A:Imprecise data.  These data are classed as a given indicator with associated
misclassification probabilities described in the next section.
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• Type-B:Interval bound data.   The value at these locations is known to fall within a given
range (i.e., the probability of occurrence is zero outside of the interval), but the
probability distribution within that range is unknown.

• Type-C:Prior CDF data.  A probability density function (PDF) is known for these data.
The data could be one of several indicators; the most likely indicator is defined by the
PDF.  The PDF could be defined from an analogous site or expert opinion.

Several masking examples for both class and threshold indicators are given below:

   Class Threshold Comments

• Type-A = 001000 00111 The quality of this information is described with a
p1-p2 term (see next section).

• Type-B = 001110 00111 The datum is known to represent one of several
indicators.  There is no information available
though to describe which indictor is most likely.
The PDF is built by kriging the surrounding data.

• Type-C = 001110 00111 The datum is known to represent one of several
indicators, and there is a PDF available to describe
the probability of occurrence for each indicator
(e.g., 0%, 0%, 20%, 50%, 30%, 0%).

For Type-B data, the threshold method requires that additional information be stored defining the
top of the interval.  These notation methods are not strict theoretical requirements, but are
conventions for this particular algorithm.

4.3.3:  P1-P2 Calculations

When describing Type-A (imprecise) data, the probability that the data correctly, or incorrectly,
reflect the value being classified is defined by the misclassification probabilities, p1 and p2 .  They
are defined as: 

p1: Given that the actual value is less than the threshold (or in the class), p1 is the
probability that the measured value is less than the threshold (or in the class) (correctly
classified).

p2: Given that the actual value is NOT less than the threshold (or not in the class), p2 is the
probability that the measured value is less than the threshold (or in the class)
(incorrectly classified).

These values are determined by comparing the soft data to co-located hard data with a training set.
After p1 and p2 have been determined, the misclassification probabilities can be used for the same
type of soft data, at locations where hard data are not present. 

Using indicator thresholds, p1 and p2 are determined by measuring the ability of soft information to
correctly classify the hard training set data above and below a specified threshold level.  This is
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shown graphically, for two thresholds, in Figure 4.5.  The misclassification probabilities are defined
as:

p1 = A / (A + D) (4.7)

p2 = B / (B + C) (4.8)

In region A, points are correctly classified as being below the specified threshold,  In region C, they
are correctly defined as being above the threshold.  In regions B and D, the soft data incorrectly
classify the sample.  Ideally p1 is greater than p2.  For hard data p1 = 1.0 and p2 = 0.0.  If the soft
data are not correlated with the hard data p1 = p2 (NOTE: p1 and p2 are not expected to sum to 1.0).
The difference between p1 and p2 indicates how useful the soft data are for classifying the samples.
When using indicator classes, rather than thresholds, the implications of p1 and p2 are the same, but
calculating p1 and p2 is more complex and the misclassification probabilities tend to increase as the
number of classes increases.  A graphical representation for calculating p1 and p2 is shown for three
classes in Figure 4.6.  The misclassification probabilities are defined as:

p1 = E / (D + E + F) (4.9)

p2 = (B + H) / (A + B + C + G + H + I) (4.10)

In region E, points are correctly classified as being included in the specified class.  In regions A, C,
G, and I, they are correctly defined as being outside of the class.  In regions B, D, F, and H, the soft
data incorrectly classify the sample.

Due to the nature of the p1-p2 classification scheme, the results for the class and threshold p1-p2

terms are identical for the first and last indicators (Figures 4.5 and 4.6: Threshold9250 p1-p2 =
Class<9250 = 0.67, and Threshold10000 p1-p2 = Class>10000 = 0.73).  This is because, in the class
method, the upper or lower bound is missing, and the equations reduce to that used for thresholds.
For other classes and thresholds, the p1-p2 will vary significantly.  If a single threshold is used, there
are only four possible classifications (A, B, C, D).  Basically the soft sample values need only be on
the correct side of the cut-off for the threshold to correctly identify the hard data sample.  Using
classes, the soft data have both high and low cut-offs, therefore the soft data precisely identify a
location as being, or not being, a member of a hard data class (Figure 4.6).  This is a more
restrictive constraint and as a result, the interior class p1-p2 values are lower than those for threshold
simulation. The quality of the soft data has not changed, it is just defined differently.  What has
changed is the ability of the algorithm to describe the imprecision.  Other approaches  have been
proposed, but are not implemented here.

4.3.4:  Difference Between Prior Hard and Prior Soft Data CDF’s for Class and 
Threshold Simulations

An additional and important difference between class and threshold simulation is the definition and
treatment of the difference in the hard data and soft data prior probability distributions.  After  the
kriging matrix has been solved, the CDF is estimated for each class or threshold.  The CDF
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FIGURE 4-6. Graphical method for calculating p1 and p2 values for a specific class.  Data from
CSM Survey Field.
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estimate is calculated from the hard and the soft data points in the search neighborhood, the relative
frequency of each indicator in the prior hard and soft data, and by the soft data scaled by the p1-p2

term discussed above.  Often, hard and soft data collection techniques suggest different percentages
of each indicator occurring at the site.  If the simulator uses thresholds, the correction term is based
on :

| (percentage of hard data < threshold) - (percentage of soft data < threshold) |

If classes are used, the correction term is based on:

| (percentage of hard data = class) - (percentage of soft data = class) |

The difference is subtle but important.  For the threshold approach, if the probability of a single
threshold varies significantly between the hard and soft data, particularly if it is the first threshold,
the importance of the remaining thresholds can be under-valued. Reordering the indicators could
alleviate some of this problem.  For the class approach, the relative occurrence of each indicator is
directly compared, therefore when one class has very different prior hard and prior soft
probabilities, these will not seriously affect other class estimates.  This is because, indicators are
directly compared, and errors are not cumulative.

4.3.5:  Order Relation Violations

As with traditional threshold simulation, the class CDF for a particular grid location may not be
monotonically increasing and may not sum to 1.0.  These are order relation violations (ORV’s).
They can be caused by use of inconsistent semivariogram models for the different thresholds or
classes, or by use of different prior probabilities and p1-p2 weights applied to soft data. Using the
algorithms described here, thresholds and classes manage ORV’s in slightly different manners.
This is, in part, due to theoretical differences in how the CDF’s are generated, but it is also due to
technical difficulties in equating the threshold CDF and the class PDF.

The method for managing threshold ORV’s in SISIM3D  was not modified, but the methods used
were not appropriate for classes.  Therefore a new set of tools for managing class ORV’s was
developed.  The differences between the two methods are described below and are diagrammed in
Figure 4.7.

For the threshold method, one type of ORV occurs when the CDF declines from one threshold to
the next (Figure 4.7a).  A CDF is a cumulative probability, so a declining CDF is physically
impossible.  It is not possible to determine which threshold causes the problem, therefore to remedy
the situation, the average of the two probabilities is assigned to both thresholds (note, the indicator
associated with the declining CDF term, has zero probability of occurrence).  For classes, the
equivalent problem is an individual class having a negative probability of occurrence  (Figure 4.7b:
indicator #2), which is also physically impossible.  In this case though, it is reasonable to simply
assign that class a zero probability of occurrence.  There is no obvious reason to distribute the error
to another unrelated indicator.

Another type of ORV occurs when the CDF sums to a value greater than, or less than 1.0.  For
thresholds, the last threshold CDF term is often less than 1.0 (Figure 4.7a), and it is assumed that
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FIGURE 4-7. For both the class and threshold approach, there are two basic types of order relation
violations (ORV).  a) An individual CDF probability is less than the CDF of a smaller threshold
(the CDF is decreasing); this is equivalent to a class having a negative probability of occurrence.
This type of ORV is resolved for thresholds by averaging the two CDF’s so that they are equal; for
classes, a 0.0 probability of occurrence is assigned to the PDF.  b) When cumulative probabilities
are greater than 1.0, the value is truncated to 1.0 for the threshold approach, while for the class
approach, the probability of each class is proportionally rescaled, so that the CDF will sum to 1.0.
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the balance of the CDF is described by the final indicator.  This is generally the case, but as shown
in an equivalent class example, it is possible for the final indicator to account for significantly more
(or less) than the remaining portion of the CDF (Figure 4.7c).  With classes, the overestimate in the
CDF can be proportionally absorbed by each of the PDF components (PDFnew = PDFold / CDFfinal

value).  In this example though, the threshold method would not have recognized that an ORV
occurred.  It is also possible that the threshold CDF will exceed 1.0 (Figure 4.7d).  Currently
thresholds manage this problem by truncating the CDF to 1.0 for the affected threshold (and all
following thresholds).  This solution is not very satisfying, in part, because it implies the offending
threshold level is fully responsible for the error, even though the CDF is a cumulative probability
(i.e., an earlier threshold could be the root cause of the problem).  It is also unstatisfying because it
biases results to the lower order indicators.  Classes again, manage this situation by distributing the
error over all the PDF components  (PDFnew = PDFold / CDFfinal value; Figure 4.7e). 

As implemented, the techniques for managing class ORV’s are less biased then the threshold
method.  This is fortunate, since the class method also produces more ORV’s.  It is felt though, that
some of these extra ORV’s occur when the threshold CDF does not sum to 1.0, and a mistaken
assumption is made that the remaining indicator exactly contributes the remaining portion of the
CDF (compare Figures 4.7a vs. 4.7c).  

4.4:  Applications

Two data sets are used to demonstrate that class indicator simulations generate statistically identical
realizations as threshold indicator simulations.  The first is a simple synthetic data set with fourteen
hard data points.  The two series of solutions yield similar results, but are not exactly the same,
because of the differences in how ORV’s are managed.  The second data set is from the Colorado
School of Mines Survey Field in Golden, Colorado and includes hard data, as well as Type-A, B,
and C soft data.  The use of classes rather than thresholds is not meant to improve results, rather it is
intended to render the process more intuitive, and to facilitate testing the sensitivity of simulations
to the order of the indicators. 

4.4.1:  Synthetic Data Set

The synthetic data set is composed of fourteen samples distributed in two-dimensional space,
representing one of three indicators (silt, silty-sand, and sand) (Figure 4.8).  A single isotropic
median semivariogram model is assumed for each indicator threshold or class, because with this
small data set, it was not possible to generate useful experimental semivariograms for each
threshold or class.  Use of a median indicator semivariogram model under these conditions is a
reasonable and recommended approach .  This also ensures that the differences between the
resulting simulations is a function of the algorithm and not due to differences in the semivariogram
models.  The median semivariogram model is:
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Model Type = Spherical
Range = 162m
Sill = 0.244
Nugget = 0.0

A regularly spaced, two-dimensional, 50 by 35 grid of 10 m by 10 m grid cells is used to create six
series of 200 realizations each (this defines the final grid; a coarse pre-grid 20m by 20m was first
calculated.  This is managed within SISIM3D and is fairly transparent to the modeler).  Three series
are generated for the threshold approach and for the class approach with the same reordering of
indicators.  For the first simulation series, the indicators are defined as:

Silt = 0
Silty-Sand = 1
Sand = 2

For the second series, the indicator order was reversed: 

Silt = 2
Silty-Sand = 1
Sand = 0

and because the order is arbitrary, the indicators in the last series were defined as: 

FIGURE 4-8. Synthetic data set distribution.
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Silt = 0
Silty-Sand = 2
Sand = 1

If a median indicator semivariogram model was not being used, the threshold semivariogram
models would have to be recalculated, but the class semivariogram models would remain
unchanged.  The averaged results of the simulation series are expected to be nearly identical in
these cases, because a median indicator semivariogram is used, but in a field application, different
semivariogram models would be used for each class and threshold, and the results of the class
simulations are likely to vary from the threshold results.  For individual simulations, changing the
indicator order will change results, because the new ordering also changes the CDF.  The indicator
components of the PDF are unaltered, but with the new order, a different CDF is built (Figure 4.9).

As a result, when the same ”random” number is used are used to select from the CDF, a different
indicator is selected (Figure 4.9).

4.4.1.1:  Initial Indicator Ordering

The class and threshold simulations generate visually similar, but not identical realizations for the
original indicator ordering scheme (silt = 0, silty-sand = 1, sand = 2).  Cell by cell comparison of
the realizations reveals that differences do occur, but these differences are caused by differences in
the way order relations violations are resolved in the two methods.  Despite these differences, the
results are sufficiently similar, that both sets of results are considered reasonable and acceptable.

FIGURE 4-9. Reordering indicators in conditional simulation changes the results for an individual
simulation grid cell, because the CDF changes along with the indicator ordering, even though the
individual components of the PDF do not.  Here the indicators from Figure 4.3 have been
reordered.  The same random number is used, but now, instead of indicator #5 being selected,
indicator #4 is selected.
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Several realizations from each simulation series are shown in Figures 4.10 and 4.11.  For each

paired realization set (realizations using the same random number seed) there are clear similarities
in the results, but there are also significant differences (e.g. the Southern portion of Realization #32,

FIGURE 4-10. Realization (#32) pairs for the a) original indicator ordering, b) reversed ordering,
and c) arbitrary reordering for thresholds (left) and classes (right).  In these realization pairs there
are significant differences between the class and threshold results: a) there is more silty-sand in the
class realization at location (270, 10); b) sand bisects the silt in the threshold realization at location
(100, 100); this not present in the class realization; c) more sand is in the class realization at
location (270, 10).  The differences between the realization pairs in a, b, and c are expected,
because reordering the indicators changes the CDF.
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Figure 4.10).  The class realization has more silty-sand near location (270, 10) than the threshold
simulation (Figure 4.10a).  In other model pairs, there are only minor differences (e.g. Realization
#100, Figure 4.11).  The similarities occur because the same ”random” path is used to generate each

FIGURE 4-11. Realization (#100) pairs for a) original indicator ordering, b) reversed ordering, and
c) arbitrary reordering for thresholds (left) and classes (right).  These threshold and class realization
pairs are similar.  The differences between the realization pairs in a, b, and c are expected, because
reordering the indicators changes the CDF.
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model grid pair (Figure 4.4), and the same ”random” number is used to select from the CDF.  For
most cells, the CDF is sufficiently similar that the same estimate is made for each cell.  Because
there are differences in how negative probabilities are generated and resolved, the CDF’s are
slightly different in some instances.  When this occurs, a random number can be generated which
results in a different estimate for the cell.   From that point on, the results of the two realizations
will diverge, because previously estimated cells are treated as hard data values in subsequent
calculations for, as yet, unestimated cells in the simulation.  Depending on the location and timing
of the divergent estimate, results may be quite similar or different. When the indicators are
reordered, the results change substantially (Figures 4.10b,c and 4.11b,c vs. 4.10a and 4.11a).  For
example, in the second set of Figures 4.11a-c, the amount and distribution of the silty-sand varies
substantially.  This occurs because the order of the CDF has been changed, yet the same random
numbers are used.  Individual realizations are not expected to be similar when the indicator order is
changed; the averaged results of many realizations though, should be the same.

It is useful to compare differences between the uncertainties associated with the realization series
instead of comparing individual simulations.  In Figures 4.12a-f, the 200 realizations for each
simulation series have been summed and averaged for each indicator, showing the probability that a
particular indicator will occur at each location (red indicates areas where the indicator always
occurs, and blue indicates where the indicator never occurs).  If these maps are summed (Figures
4.12a + c + e, or 4.12b + d + f) every cell will equal 100 percent.  The maps and histograms in
Figures 4.13a-f and 4.14a-f present the distribution of the maximum probability of any indicator
occurring for each approach for each cell, providing an overall measure of uncertainty.  With three
indicators, the minimum value is 33% (blue: all indicators equally likely to occupy cell) and the
maximum value is 100% (red: at locations with hard data point).  Ideally these maps would be
nearly identical, signifying that, although different estimation techniques are used, the same net
result is obtained.  However, in this case the threshold orderings, always have a slightly higher
mean probability of occurrence (Figures 4.14a, c, and e mean values versus 14b, d, and e mean
values), which implies the threshold results are slightly better than the class results.  The
differences though are small, and as will be shown in section 4.4.2.2, threshold results are not
always associated with greater certainty.  In this example, class and threshold realizations vary by
as much as 12% in some areas (Figure 4.15a: the largest differences are indicated in red and blue (+
and -  errors), with green areas yielding nearly identical results).  This is because the variation of
uncertainty caused by simply reordering the indicators is of a similar magnitude for threshold
simulations.  This is demonstrated in the next section and illustrated in Figures 4.15b and 4.15c.

4.4.1.2: Reverse and Arbitrary Indicator Ordering

Although the initial comparison of class and threshold simulations indicate small, local areas that
are significantly dissimilar, the variations are on the same scale ( are simply reordered (Figures
4.15b and 4.15c).  If the differences which occur from an arbitrary reordering of the indicators are
no larger than those that result from using classes, it is concluded that the class and threshold
techniques are essentially the same.

When the order of the indicators is simply reversed (silt = 0  2, silty-sand = 1, sand = 2  0), the
differences in the threshold simulations are relatively minor, again about rily reordered (silt = 0,
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silty-sand = 1  2, sand = 2  1, Figure 4.15c).  Given this level of variability in realization results, due
only to the order of the indicators, similar variations due to class simulation indicate that the
approach is as acceptable as the threshold approach.  Additional realizations (1000’s) are being
computed to determine if these differences are due to the size of the simulation series (200).  These
results though, are not yet available.

FIGURE 4-12. Maximum probability of occurrence for each indicator.  At hard data locations, the
indicator type is known; the probability is 0% for any other indicator type, or 100% for the
specified indicator type.
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Variability of results for different ordering of indicators using class indicator simulation is equally
consistent.  Result from two reordering schemes are shown in Figures 4.15d (silt = 0  2, silty-sand =

FIGURE 4-13. Maximum probability of occurrence of any indicator.  At known data points, the
maximum probability of being a particular indicator is 100%.  The minimum probability is 33%
(100% / # of indicators); at these locations each indicator is equally likely to occur.  These maps are
useful for evaluating the spatial distribution of uncertainty.

0 100 200 300 400

0

50

100

150

200

250

300

e). Threshold Simulation Series #3 (Reordered)
Maximum Probability of Occurence

Easting (m)

N
or

th
in

g 
(m

)

Contour Legend
Interval = 5

33.0

46.4

59.8

73.2

86.6

100.0

 50  5
0 

0 100 200 300 400

0

50

100

150

200

250

300

c). Threshold Simulation Series #2 (Reversed)
Maximum Probability of Occurence

Easting (m)

N
or

th
in

g 
(m

)

Contour Legend
Interval = 5

33.0

46.4

59.8

73.2

86.6

100.0

0 100 200 300 400

0

50

100

150

200

250

300

a). Threshold Simulation Series #1
Maximum Probability of Occurence

Easting (m)

N
or

th
in

g 
(m

)

Contour Legend
Interval = 5

33.0

46.4

59.8

73.2

86.6

100.0

0 100 200 300 400

0

50

100

150

200

250

300

b). Class Simulation Series #1
Maximum Probability of Occurence

Easting (m)

N
or

th
in

g 
(m

)

Contour Legend
Interval = 5

33.0

46.4

59.8

73.2

86.6

100.0

0 100 200 300 400

0

50

100

150

200

250

300

d). Class Simulation Series #2 (Reversed)
Maximum Probability of Occurence

Easting (m)

N
or

th
in

g 
(m

)

Contour Legend
Interval = 5

33.0

46.4

59.8

73.2

86.6

100.0

0 100 200 300 400

0

50

100

150

200

250

300

f). Class Simulation Series #3 (Reordered)
Maximum Probability of Occurence

Easting (m)

N
or

th
in

g 
(m

)

Contour Legend
Interval = 5

33.0

46.4

59.8

73.2

86.6

100.0



T-4595:  Colorado School of Mines 85

4.4: Applications

1, sand = 2  0) and Figures 4.15e (silt = 0, silty-sand = 1  2, sand = 2  1).  As with the threshold
realization series, the differences in the class realization series appear random and are limited to
approximately 

FIGURE 4-14. Frequency of maximum probabilities throughout the grid.  At known data points, the
maximum probability is 100%.  The minimum probability is 33% (100% / # of indicators); at
locations where each indicator is equally likely to occur.
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For each ordering scheme, the differences between the threshold and class simulations (Figures
4.15a, 4.15f, and 4.15g) are less then the differences between different ordering schemes when the
same method was used.  Given these similarities, and knowing that differences result in differences
in managing ORV’s, it is concluded that class and threshold simulation generate equivalent results.

4.4.1.2.1: Simulation Differences Due to Indicator Order

One of the initial motivations for using classes was to eliminate the differences in simulations
resulting due to indicator ordering.  As seen in the examples above, the class simulations have a
similar problem.  The probability for each class indicator is calculated independently, therefore
order should not make a difference, yet it does.  If the differences are not due to computer round-
off, there should be differences in the kriging matrices or the kriging weights, however cells with
different results were identified and compared, and this was not the case. It is possible that some of
the differences due to indicator ordering are associated with the random number generator but this
is difficult to demonstrate or prove.  The random number generator used in this program  was
evaluated for a group of 10,000 and 100,000 random numbers (Figure 4.16a,b,c), and no serious, or
obvious bias was found, but all numbers are not equally sampled.  These differences could explain
some of the differences in the simulation results, because when the indicators are reordered,
preferences to different ”random” number ranges could cause a bias.  It is thought that the source of
the problem, is the management of the ORV’s.

4.4.1.2.2: Simulation Differences Due to Order Relation Violations

Realization #32 (Figure 4.17 (these are the coarse pre-grids for the realizations in Figure 4.10a)) is
used to demonstrate the difficulties that arise, due to ORV’s.  The first violation occurred at cell
((25, 2)  (490m, 30m)) during the simulation of the coarse grid (realizations are calculated in two
passes; a coarse grid is simulated first, then it is used to condition the fine grid).  Calculations for
this cell were based on 37 values (including original sample points and prior estimated grid cells)
(Table 4.1).  Because the same semivariogram models were used for all class and threshold levels,
the class and threshold kriging matrices were identical, therefore the kriging weights were
identical.  The following uncorrected CDF (threshold) and PDF (class) values were calculated:

Both the threshold (1.089 > 1.0) and class (0.563 + 0.526 = 1.089 > 1.0) probabilities needed to be
rescaled to 1.0.  The threshold method truncates CDF values greater than 1.0 to 1.0, and the class

CDF                               PDF

Threshold F(Z≤thr.) Threshold F(Z=class)

0.5 0.563 1.0 0.563

1.5 1.089 2.0 0.526

3.0 0.000
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FIGURE 4-16. Test of random number generator:  a) scatter of 10,000 sequential random numbers,
b) frequency distribution of 10,000 random numbers (equal distribution would put 1% in each
class), and c) frequency distribution of 100,000 random numbers (equal distribution would put 1%
in each class).
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FIGURE 4-17. Coarse grid realization (#32) pair for the original indicator ordering.  These grids,
are slightly different, due to an ORV occurring at (490m, 30m).  Because of the ORV, the CDF’s
varied between the two methods at this cell, and a random number in each realization selected
different material types for the cell.  From this point forward, the prior sample data, and prior
evaluated cells varied.
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method scales all the PDF terms so they will sum to 1.0.  The corrected distributions are:

and the final class PDF is converted to a CDF:

The probabilities are no longer the same, and in this realization, a random number of 0.547 was
generated to select the indicator class.  As a result, for the threshold realization, the cell was defined
as silt (indicator #1; 0.547 < 0.563).  For the class realization, the cell was defined as silty-sand
(indicator #2; 0.547 > 0.517).

Although the methods initially agreed exactly on the probability of occurrence for indicators #1 and
#2, the different procedures for correcting the ORV’s, resulted in different CDF’s.  As a
consequence, the results for this grid cell pair, and those following, diverged.  With different
estimates for this cell, future class and threshold calculations using this cell as a conditioning point
would generate different CDF’s even without further ORV’s.

4.4.2:  Colorado School of Mines Survey Field

At the CSM survey field, located on the west edge of Golden, Colorado (Figure 4.18), hard and soft
data were collected to investigate the use of soft data for reducing uncertainty associated with
groundwater flow models .  The site data include core and chip samples; borehole geophysical logs;
and eight (Figure 4.19), two-dimensional, cross-hole, tomographic sections.  A sub-region of the
data set is used to demonstrate class vs. threshold indicator simulation.

This data set is used to compare the class and threshold simulation techniques, using, not only hard
data values, but also three different types of soft data.  Because of differences in the semivariogram
models, and management of soft data, the simulations generated using threshold and class
approaches were not identical.  In this case, the class realizations have a slightly higher average
certainty level, though uncertainty at individual cells can be substantially higher or lower than the
threshold models in the same cell.  Some of the differences may be due the random number
generator, but most likely they result from differences in managing ORV’s.

CDF                               PDF

Threshold F(Z≤thr.) Threshold F(Z=class)

0.5 0.563 1.0 0.517

1.5 1.000 2.0 0.483

3.0 1.000

CDF                               CDF

Threshold F(Z≤thr.) Threshold F(Z=class)

0.5 0.563 1.0 0.517

1.5 1.000 2.0 1.000

3.0 1.000
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Coarse Grid Position Indicator ID Kriging

X Y Z Threshold Class Weight
21 3 1 111 100 0.328

21 5 1 011 010 0.437

20 2 1 111 100 0.117

18 2 1 111 100 0.128

23 4 1 001 001 -0.051

21 7 1 011 010 0.048

17 7 1 011 010 0.104

22 8 1 001 001 -0.015

24 6 1 001 001 -0.018

24 7 1 001 001 -0.014

17 8 1 011 010 -0.007

15 3 1 111 100 0.044

15 2 1 111 100 -0.030

14 5 1 001 001 0.010

14 8 1 011 010 -0.023

23 11 1 001 001 -0.045

14 9 1 011 010 -0.033

24 11 1 001 001 -0.011

22 12 1 001 001 -0.004

14 10 1 011 010 0.000

24 12 1 001 001 0.041

11 3 1 111 100 -0.012

11 7 1 001 001 -0.005

11 1 1 111 100 -0.002

11 8 1 001 001 0.003

22 14 1 001 001 0.004

11 9 1 001 001 0.017

16 14 1 111 100 -0.001

14 14 1 111 100 0.004

7 5 1 001 001 0.001

7 10 1 111 100 -0.006

5 2 1 111 100 0.000

7 14 1 111 100 -0.001

4 10 1 001 001 0.000

3 2 1 111 100 -0.002

7 17 1 111 100 -0.002

1 2 1 111 100 -0.002

Silt  111 100

Silty-Sand 011 010

Sand 001 001

TABLE 4.1. Kriging weight and nearest neighbors for both class and threshold realization 
#32.  The indicators at each point, and the kriging weights are identical.
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4.4.2.1:  Model Definition and Simplifying Assumptions

The model and grid dimensions are based on the same data and indicator classes as described by
McKenna and Poeter (1994) for the CSM survey field (Figure 4.20).  However, only a small sub-
grid was used for this demonstration. The grid was dimensioned 80 columns equally spaced
between 2,045 feet - 2,450 feet in the X direction, 60 rows equally spaced between 4,228 feet -
4,533 feet in the Y direction, and 2 layers, each two feet thick between 5,917 feet - 5,921 feet in the
Z direction.  This same grid was used for both the threshold and class simulation.

The eight indicator classes are based on seismic velocities of different materials at the site (Table
4.2).  The indicators were selected after thorough analysis which concluded that the seismic

FIGURE 4-18. CSM Survey Field location map.
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velocities reflected differences in hydrologic flow properties.  Several distinctly different lithologies
were grouped together because they displayed similar hydraulic properties and spatial correlation’s.
The indicator classes are defined in Table 4.3.  Initial estimates of hydraulic conductivity values
were assigned to each indicator based on either material type, permeability measurements, or

FIGURE 4-19. CSM Survey Field site map.  Dots represent borehole locations.  Solid lines identify
location of tomography surveys.

Indicator Material Description

1 Conglomerate (Lyons Formation)

2 Fine to coarse sandstone with conglomerate lenses

3 Fluvial sandstone (Lyons Formation)

4 Very fine to very coarse sandstone

5 No core recovered.  Moderately consolidated with low-moderate clay

6 Two materials: 1) silty sandstone, and 2) poorly sorted sandstone with 
siltstone and conglomerate lenses

7 No core recovered.  Poorly consolidated, low clay material

8 No core recovered.  Well fractured area of any material type.

TABLE 4.2. Indicator and associated material type.
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estimated material sonic velocities.  Later, inverse flow modeling was used to improve the hydraulic
conductivity estimates.  The sonic-velocities were used as Type-A data as described in Tables 4.4

and 4.5.  The p1-p2 values are significantly lower for the class method, because the class method is
more restrictive.

The frequency distribution of indicators was based on the same sample information (Tables 4.6 and

4.7).  The soft data prior distributions are based only on hard and the Type-A data.  Type-B and C
data were available, but assigning them to an individual class or threshold is not possible.

In order to make realizations for the class and threshold simulation as similar as possible, the same
data distributions and grid were used.  It was not possible to use the same semivariogram models

Indicator Sonic Velocity (ft/sec) Hydraulic Conductivity (ft/day)

1 > 10870 0.0011

2 10000 - 10870 0.0011

3 9050 - 10000 0.0025

4 8550 - 9050 0.0043

5 8050 - 8550 0.040

6 7250 - 8050 0.0043

7 6060 - 7250 0.40

8 < 6060 7.8

TABLE 4.3. The indicator classification is based on sonic velocity measurements, and are 
matched to approximate hydraulic conductivity’s.

Threshold

Threshold Velocity
(ft/sec) Threshold p1 p2 p1 - p2

6060 7 0.00 0.00 0.00

7250 6 0.56 0.04 0.52

8050 5 0.58 0.05 0.53

8550 4 0.63 0.10 0.63

9050 3 0.84 0.17 0.67

10000 2 0.90 0.17 0.73

10870 1 0.91 0.15 0.74

6060 velocity: No hard data to calibrate against.  Found only in tomography cross sec-
tions.

TABLE 4.4. Threshold p1-p2 estimates.
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(Tables 4.8 and 4.9) in both sets of simulations though, because the class and threshold methods
calculate the semivariogram models on different portions of the data set.  The first and last
semivariogram models will always be identical, but there can be significant differences in the
intermediate models.  For example, the maximum range for threshold 3.5 is 282 feet in the East-
West direction and 174 feet in the North-South direction.  For classes three and four, the respective
ranges are much shorter (111, 77 feet and 117 feet respectively).  It is thought that most of the
differences in the simulation results are due to the differences in the semivariogram models.

Class

Velocity Range
(ft/sec) Class p1 p2 p1 - p2

 < 6060 8 0.00 0.00 0.00

6060 - 7250 7 0.56 0.00 0.56

7250 - 8050 6 0.39 0.04 0.35

8050 - 8550 5 0.25 0.12 0.13

8550 - 9050 4 0.45 0.18 0.27

9050 - 10000 3 0.26 0.13 0.13

10000 - 10870 2 0.38 0.05 0.33

> 10870 1 0.84 0.00 0.84

6060 velocity: No hard data to calibrate against.  Found only in tomography cross sec-
tions.

TABLE 4.5. Class p1-p2 estimates.

Cumulative Probability 

Threshold Hard Soft Difference

1.5 0.1638 0.2306 0.0668

2.5 0.2370 0.3120 0.0750

3.5 0.2706 0.5031 0.2325

4.5 0.3693 0.7306 0.3613

5.5 0.3886 0.8491 0.4605

6.5 0.5066 0.9429 0.4363

7.5 1.0000 0.9748 0.0252

TABLE 4.6. Threshold prior hard and prior soft (Type-A) data distributions.  The large 
difference in threshold 3.5 propagates through threshold 6.5.
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4.4.2.2:  Geostatistical Realizations and Results

A total of 100 realizations were calculated for both the class and threshold models.  In this section,
several realization pairs are described, the probability that any individual indicator will occur is
defined, then the difference between the class and threshold realizations and the maximum
probability that any indicator will occur in each cell are calculated.

Examining the paired realizations from each set, it is clear that the same site is being simulated, but
there are subtle, yet distinct differences in the realizations (Figures 4.21 and 4.22).  The general

Individual Probability 

Class Hard Soft Difference

1 0.1638 0.2306 0.0668

2 0.0732 0.0814 0.0082

3 0.0336 0.1911 0.1575

4 0.0987 0.2275 0.1288

5 0.0193 0.1184 0.0991

6 0.1180 0.0938 0.0242

7 0.4934 0.0319 0.4615

8 0.0000 0.0252 0.0252

TABLE 4.7. Class prior hard and prior soft (Type-A) data distributions.

East-West North-South Vertical

Threshold Range Sill Range Sill Range Sill Nugget

1.5 81.0 0.118 155.6 0.118 81.0 0.0623 0.0516

2.5 93.0 0.207 126.0 0.207 54.0 0.0061 0.0

3.5 75.0 0.169 174.0 0.246 21.0 0.0468 0.0

282.0 0.0783

4.5 90.0 0.0831 15.0 0.149 3.0 0.0405 0.0

204.0 0.145 99.0 0.0765 47.0 0.0358

5.5 132.0 0.189 12.0 0.158 36.0 0.0692 0.0

48.0 0.0308

6.5 78.0 0.129 15.0 0.129 93.0 0.0284 0.0

7.5 61.5 0.0208 18.5 0.0208 36.9 0.0079 0.0

NOTE: Multi-nested models require two rows.

TABLE 4.8. Threshold semivariogram models.
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distribution of  indicators is similar, but the threshold realizations have more scatter, and produce
smaller regions of indicator #8 (examine grids near (2380, 4420): indicator #8 is red).  The reason
for the differences are based on three factors: 1) differences in the semivariograms, 2) differences in
the p1-p2 values, and 3) differences in applying the prior hard minus prior soft prior probabilities.
In the individual realization pairs, the indicators in the threshold realizations tend to be slightly less
continuous.  It appears this is caused by the large differences between the hard and soft prior
distributions and the ORV’s.

In addition to the greater randomness in the threshold realizations, there is also larger uncertainty
associated with the spatial distribution of indicators.  Several figures were prepared to illustrate the
differences in the results of the threshold and class simulations and to show that smaller
uncertainties are associated with the class simulations.  Figure 4.23 illustrates the probability a
particular indicator will occur in each cell for both the threshold (left) and class (right) simulation
series.  The highest certainty levels coincide with the hard and soft data locations (red = 100%, blue
= 0%).  Figure 4.24 shows the difference between probability of occurrence for the class and
threshold simulation series for each indicator.  The largest differences (red: class probability >>
threshold probability; green: class probability ≅  threshold probability; blue: class probability <<
threshold probability) occur where the model has the most data.  By examining the kriging matrix
results, and CDF development in these areas for several cells, the differences are largely due to
differences in how the prior data probabilities modify the CDF and how ORV’s are handled
between the class and threshold techniques.  The differences in uncertainty also tend to be small
away from the control data, because both methods are very uncertain as to what is occurring in
those areas (a small number minus a small number equals a small number).  In areas of the model
grid with little or no data, the averaged results are more similar (green: differences ≅  0.0), but there
is more uncertainty.  

East-West North-South Vertical

Class Range Sill Range Sill Range Sill Nugget

1 81.0 0.118 155.6 0.118 81.0 0.0623 0.0516

2 64.5 0.0720 20.3 0.0720 41.0 0.0374 0.0

3 110.7 0.0878 43.1 0.0397 92.3 0.0878 0.0447

116.9 0.0480

4 76.9 0.0880 116.9 0.0880 59.0 0.0880 0.0709

5 104.6 0.0878 64.6 0.0878 27.7 0.0658 0.0

6 150.7 0.0910 31.0 0.0910 31.0 0.0910 0.0

7 61.5 0.116 15.4 0.116 49.2 0.0569 0.0

8 61.5 0.0208 18.5 0.0208 36.9 0.0079 0.0

NOTE: Multi-nested models require two rows.

TABLE 4.9. Class semivariogram models.
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FIGURE 4-21. Individual threshold and class realization #1. 
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FIGURE 4-22. Individual threshold and class realization #37.
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The maximum probability that any indicator will occur in each cell is shown in Figure 4.25 (red
implies more certainty, up to 100% at hard data locations; blue less, as little as 12.5% (100% / #
indicators)) with associated histograms presented in Figure 4.26.  From the histograms, it can be

FIGURE 4-23 a,b,c. Maximum probability of occurrence for threshold and class indicators #1, #2,
and #3.  At known hard data points, probability is 0% for any other indicator type, or 100% for the
specified indicator type.
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seen that there is slightly less uncertainty in the class realizations (class mean maximum probability
(certainty level) is 37% compared the 33% for thresholds) and the differences in uncertainty are
presented in Figure 4.27a.  Positive differences (green to red) show areas where the class

FIGURE 4-23 d,e,f. Maximum probability of occurrence for threshold and class indicators #4, #5,
and #6.  At known hard data points, probability is 0% for any other indicator type, or 100% for the
specified indicator type.
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realizations are less uncertain than the threshold realizations; negative differences (green to blue)
show areas where the class realizations are more uncertain than the threshold realizations.  These
maps are useful for defining the uncertainty in the model, but are not useful for analyzing the
distribution of a particular indicator.  Again the largest differences are near areas of hard and soft
data (red: class certainty >> threshold certainty; green: class certainty ≅  threshold certainty; blue:
class certainty << threshold certainty), and this relates to the problems associated with the
difference in how ORV’s are managed.  For this site, the class realizations show less uncertainty
than the threshold realizations.  On average the mean uncertainty reduction is 3.9% with a standard
deviation of 9.3% (Figure 4.27b).  Based on this model alone it is premature to suggest that the
class method may  help reduce model uncertainty.  In the synthetic models described in section
4.4.1.1, the threshold realizations had slightly smaller uncertainties than the class realizations.

FIGURE 4-23 g,h. Maximum probability of occurrence for threshold and class indicators #7 and
#8.  At known hard data points, probability is 0% for any other indicator type, or 100% for the
specified indicator type.
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4.5:  Conclusions

It cannot be argued that class simulation is a numerically better technique than threshold
simulation, but overall it is not worse.  Class simulation has some significant advantages over
threshold simulation:

• Class simulation is more intuitive.  The range of a class semivariogram is easier to
understand conceptually than the range of a threshold semivariogram.

• Testing simulation sensitivities due to indicator ordering is easy to perform.
Recalculation of semivariogram models is not required.  In contrast, if thresholds are
used,  a new semivariogram model must be calculated for each threshold for each
reordering, adding significant work for the modeler.

FIGURE 4-24 a,b,c,d. Difference between the class and threshold, individual indicators (#1-4)
maximum probability of occurrence maps.
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Several other advantages of using the classes approach were revealed during this analysis:

• ORV’s, are more common with the class approach (a negative), because the last CDF
value is calculated rather than implied.  However, ORV’s are more logical when the
CDF is greater than 1.0.  It can be to argued that the increase in ORV’s occurs because
class simulation better identifies problem cells, and correctly adjusts the weights.

• Hard and soft data prior probabilities differences tend to be smaller.  Using thresholds, a
large difference in an early class propagates through remaining indicators, making the
differences artificially large.

• Theoretically, though not proven here, the indicator ordering should not affect the
simulation results.  Eventually though, it may be possible to relate the class
semivariograms to geological sequences ; geostatistics has not yet been able to
consistently observe geologic laws.

There are some disadvantages to using classes to:

FIGURE 4-24 e,f,g,h. Difference between the class and threshold, individual indicators (#5-8)
maximum probability of occurrence maps.
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4.5: Conclusions

FIGURE 4-25 a,b. Maximum probability of occurrence of any indicator.  At known data points,
probability is 100%.  The minimum probability is 12.5% (100% / # of indicators); at these locations
each indicator is equally likely to occur (no cells had this minimum probability).  These maps are
useful for identifying the spatial distribution of uncertainty.
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• Class simulation depends on poorer p1-p2 values for Type-A soft data.  It is not that the
data quality has changed, but the method in handling the data has changed.

FIGURE 4-26 a,b. Histograms indicate the maximum probability of occurrence of any indicator.
At known data points, probability is 100%.  The minimum probability is 12.5% (100% / # of
indicators); at these locations each indicator is equally likely to occur (no cells had this minimum
probability).  Class realizations have slightly higher mean indicating lower overall uncertainty.
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4.5: Conclusions

• Class simulation requires one additional semivariogram model.  This requires more
effort on the modelers part if sensitivity to indicator order is not being evaluated.

FIGURE 4-27. a) Spatial distribution of the difference between the class and threshold maximum
probability maps; b) histogram of the same information.  The positive mean difference indicates the
class realizations have a lower level of uncertainty.
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• Class simulation is computationally more expensive.  An additional kriging matrix must
be solved for every grid cell.

The last two disadvantages, are insignificant if even one indicator reordering is done to test model
sensitivity to the indicator order.  The modeler’s effort to develop new threshold semivariograms for
the new ordering outweighs the initial setup effort for the class approach.  Class simulation is a
useful technique, if only because it is more intuitive.
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CHAPTER 5 ZONAL KRIGING

Kriging and conditional indicator simulation are valuable tools for evaluating uncertainty in the
subsurface, but are limited by the assumption of stationarity (i.e. the mean and spatial variance are
constant across the site).  If the regions are distinct and unrelated, then zonal kriging can be
accomplished manually by modeling each region and merging the results into a single model.
However, merging results is expensive in human resources and computer processing time, and
merged results cannot represent gradational transitions. A technique called zonal kriging was
developed and is presented in this chapter so that different spatial equations can be applied to
separate regions of a site.  This zonal kriging algorithm is applied to a synthetic data set, to data
from an extensively sampled outcrop in Yorkshire, England, and to a subsurface site at the Colorado
School of Mines (CSM) survey field, in Golden, Colorado.  Estimation of the synthetic data set
demonstrates the advantages and shortcomings of the technique, and conditional multiple indicator
simulations of both the Yorkshire outcrop and the CSM survey field data sets illustrate the
improvement attained through use of zonal kriging.

5.1:  Introduction and Previous Work

Significant variation of spatial statistics across a site can violate the basic assumptions of
stationarity  and this can lead to strongly biased estimates .  Depending on the magnitude of the
deviation from stationarity and the importance of the results, two approaches are often taken.  One
assumes the problem can be controlled with the local stationarity of the neighboring data samples ,
and a spatial model which reflects the mean behavior of the entire site.  The other divides the area
into an appropriate number of zones, describes the spatial statistics for each zone (Figure 5.1),
estimates each zone, and merges the results.  One problem with the second method is that the
boundary between zones is often abrupt .  The second method may be appropriate where the contact
is a fault or an unconformity, but the results are unsatisfactory for sites with gradational transitions.

One alternative approach, that can be applied in cases with gradational boundaries is to transform
all the points in the data set to match the spatial statistics of the cell currently being estimated  in
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which case all the site data are considered, whether they are from the zone of interest or not.  This
method eliminates the problem of sharp zone boundaries, and addresses the possible gradation of
properties between zones, and eliminates the need to manually merge individual zones into a single
model.  However , it does not accommodate sharp boundaries, nor does it recognize that some
points from neighboring zones may have no bearing on the estimated value, even though they are in
the transformed search neighborhood.

The approach presented here has the advantage of both of the zoning techniques described above
and adds utilities to define inter-zone relationships.  Such relationships describe how data, located
in one zone are treated when sampled for a cell calculation located in another zone.  This technique
is applied using Simple (SK) and Ordinary Kriging (OK), and Multiple Conditional Indicator
Simulation (MCIS).  MCIS is used in two ways in this chapter.  It is first used to define the zonation
boundaries.  MCIS can generate multiple, unique, realizations of zone boundaries, which honor the
statistics of the data.  This is a useful technique when the data are limited.  This makes the
simulation a two step process; first the zone boundaries are defined using discrete MCIS, then the
interior of each zone is estimated using SK or OK.  The second use of MCIS, is to populate the
zones (predefined with some other method) with indicator based parameter estimates.  MCIS can
be used to generate zone boundaries; and MCIS, SK, or OK can be used to estimate parameter
variations within the zones.

FIGURE 5-1. Spatial statistics may vary across a site, such that a single semivariogram model may
not be appropriate for the entire site.

Zone 1 Zone 3

Zone 2
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5.2:  Methodology

Existing kriging algorithms (ktb3dm ; and SISIM3D) were modified to implement zonal kriging.
Both codes have the required mathematical tools, but the calculation sequence was reordered,
additional input describing zones and their transitional character was defined, and the search
algorithm was modified.  The standard kriging algorithm and modifications for zonal kriging
(italicized steps) are shown in a flowchart in Figure 5.2.  The key new aspects that have been added

to the previous algorithms are:

1) Defining zones:  Defining zones is the most arbitrary portion of the process.  Choosing
the location of boundaries between zones is subjective, particularly when the data are

FIGURE 5-2. Basic steps involved in the standard kriging algorithm with additional steps needed to
implement Zonal Kriging indicated in italics.

Read in inter-zone relationships
         Sharp
         Gradational
         Fuzzy

Read in zones - grid masks

Loop though each output grid cell

Locate nearest neighbors - neighbors must pass zone
                relationship criteriaBuild kriging matrix

Evaluate grid to point, point to point covariances (γ(h))

Solve kriging matrix

Write out results

Define output grid dimensions

Read in  search direction and anisotropies

Read in semivariogram model definitions
          One model  for each zone

Read in location and sample data
         Assign each point to a zone

Standard Kriging Algorithm with Zonal Kriging Modifications
(Additional Zonal Kriging tasks in italics).

A d d i t i o n a l   T a s k sO r i g i n a l   T a s k s   ( w i t h   m o d i f i c a t i o n s )
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sparse.  In the synthetic example described below, a realization from a MCIS is used to
define the zonation.  Repeating the process using zones from a series of realizations,
addresses much of the uncertainty associated with the location of the boundaries
(although this is not done in this chapter).  In the Yorkshire, England example MCIS is
not used to define zones because there are sufficient data to determine zones by
stratigraphic interpretation.  At the CSM survey field, the zonal boundary is defined
along the contact between two geologic formations.

2) Defining inter-zone relationships.  Inter-zone relationships may be Sharp (the zones
are completely unrelated), Gradational (one zone merges infinitely into the other), or
Fuzzy (the zones are gradational over a limited distance and then are distinct).  If the
inter-zone relationship is Fuzzy (this term does not refer to fuzzy logic), the width of
the boundary must also be defined.  The rationale behind each type of transition is as
follows:

Sharp:  In many cases, two units are in contact with one another (Figure 5.3a),
but otherwise are unrelated.  Examples are faults and geologic
unconformities.  In this situation, it is not appropriate to use data from one
zone to estimate the spatial distribution in the other.

Gradational:  In some environments, units grade into one another (Figure 5.3b).
This is typical of coastal deposits where beach sands grade into marine clays
and shales.  In each environment, the depositional systems are very different,
but the change is gradational.  Selecting this option requires the assumption
that the region being estimated lies fully within the gradational region.

Fuzzy:  Fuzzy inter-zone relationships are similar to the Gradational relationship,
however the transitional distance is limited in extent (Figure 5.3c).  Beyond a
defined distance, data from the other zone is no longer correlated to the
location being considered.  The width of this boundary is subjective, as it is
not necessarily related to the range of the semivariogram of either zone.
Defining the width of the zone is left to the modeler, and is based on their
experience and knowledge of site conditions.  The gradational method, is a
special case of the Fuzzy method with an infinite boundary width.

Once the user has defined the zones and the inter-zone relationships, the algorithm:

3) assigns each data point to a zone.

4) creates a mask for each zone, describing how each cell within the grid will be treated.

Once these prerequisite details are defined, each grid cell is evaluated.  When estimating a grid cell
value, the modified programs use the properties associated with the zone in which that cell lies.
This includes search criteria and semivariogram model information.  The algorithm then:

5) finds the nearest neighboring data points: Neighboring points may be selected in
several ways depending on the zone inter-relationship.  If the points are in the same
zone they are treated normally.  If the boundary is sharp, no points from across the
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boundary will be used (Figure 5.4a).  If the boundary is gradational, the nearest points
will be used regardless of the zone they belong to (Figure 5.4b). If the transition is
fuzzy, points can be selected from the neighboring zone, but only to a limited distance
(Figure 5.4c), and all other points are ignored.

FIGURE 5-3. Different methods for describing zone contacts: a) sharp, b) gradational, and c) fuzzy.

Granite

Shale

Sandstone
Unconformities

Sharp
Contact
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Contact
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6) generates and solves the kriging matrix:  Once the nearest neighbor points have been
selected, the kriging algorithm proceeds, evaluating all points using the semivariogram
model from the zone of the cell being estimated.  This is regardless of which zone each
point is from, or how deep the point is into the neighboring zone.  The information
describing the semivariogram from the neighboring zone is ignored because merging
the models may lead to a matrix that is not positive definite, a basic requirement for
kriging.

FIGURE 5-4. The search for nearest neighbors varies with zone boundary type: a) sharp, b)
gradational, and c) fuzzy.
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5.3:  Examples

Three examples are used to demonstrate the utility of zonal kriging.  The first is based on a small
sample of eleven synthetic data points.  This example demonstrates 1) the differences between SK
with and without zoning; 2) how different inter-zone relationships can effect results; and 3) some of
the shortcomings of zonal kriging.  The second example applies zonal kriging and indicator
simulation to an extensively sampled fluvio-deltaic outcrop in Yorkshire, England .  This outcrop
exhibits two zones with different spatial characteristics, and was ”sampled” on seven vertical lines
representing bore-holes, thus allowing the comparison of simulations based on a small sample of
points, with the full, known section.  This example demonstrates that dividing the cross-section into
two zones yields more realistic realizations as compared with modeling the site using a single zone.
The final example uses a data set from the Colorado School of Mines survey field, Golden,
Colorado.  Zonal kriging is applied to field data in combination with techniques described in earlier
chapters (directional semivariograms, class indicators).

5.3.1:  Synthetic Data Set Example

A simple, synthetic, two-dimensional data set of porosity’s (%) with eleven data points (Figure
5.5a) was evaluated using SK (Figure 5.5b).  If the spatial statistics of the site are relatively
consistent, this may be a good interpretation.  However, if the data reflect material properties from
three distinctly different areas, where the spatial statistics are substantially different, another
interpretation is needed (three zones is excessive given the amount of data, but is useful for this
demonstration).  Given a map of the material zones (Figure 5.5c is one possible zonation realization
created using MCIS), the site can be modeled using one of several assumptions: 1) the zones are
completely unrelated; 2) there is an infinite gradation between zones; or 3) there is a short distance
over which the zones are gradational.  For these examples, the following isotropic semivariogram
models were used:

Although these models are not dramatically different, some interesting results are obtained.  

Simple kriging with sharp, non-gradational contacts yields the map shown in Figure 5.5d.  In this
model, Zone 1 (Figure 5.5c - blue) and Zone 3 (red) are gradational, but Zone 2 (green) is
completely unrelated.  This yields sharp transitions between Zone 2 and the other two zones.
Within each zone though, the surfaces are smooth as would be expected with SK.  The sharp
transitions match the zone definition shown in Figure 5.5c.

Single Zone Zone 1 Zone 2 Zone 3

Model Type Spherical Spherical Spherical Spherical

Range 150 m 150 m 175 m 200 m

C1 0.24 0.24 0.22 0.22

Nugget 0.01 0.01 0.03 0.03
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A gradational contact between adjacent units produces a different map.  In this example (Figure
5.5e), Zones 1 and 3 are gradational, and the contact between Zones 2 and 3 is also defined as
gradational (the contact between Zone 1 and 2 is sharp).  The contour lines in Zone 1 are unchanged
from Figure 5.5d, but there is substantial smoothing between Zones 2 and 3, although it is not
complete, and the boundaries are somewhat abrupt.  This incomplete smoothing occurs because the

FIGURE 5-5. Different forms of ordinary and zonal kriging. (a) Sample data, (b) a traditional Simple
Kriged map, (c) one possible zone map from a conditional indicator simulation, (d) sharp transition,
(e) gradational transition, (f) fuzzy transition.
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data control for neighboring cells in different zones is coupled with different semivariogram
models, and model ranges near the sample spacing of the data.  These rough transitions will
disappear with finer sampling.

The final option is explored by defining transitional (fuzzy) contacts of finite thickness.  In this
example, Zone 1 was defined to have a fuzzy boundary of 20 meters with Zone 2, and Zone 3 was
defined to have a fuzzy boundary of 40 meters with Zone 2.  Although there is substantial
smoothing, each zone maintains much of its own character (Figure 5.5f), and the map is still
substantially different than the map generated using single zone SK (Figure 5.5b).  In some of the
fuzzy boundary zones, particularly near the southern map border (Zone 2 vs. Zone 3), the contacts
are still quite abrupt.  This is, as noted for the gradational method, due to lack of data within the
model range.

Which of the above models best represents the synthetic site is not an issue for this discussion.
What is important, is that the modeler can control zonal differences and inter-relationships as
appropriate for the site under evaluation, thus providing additional flexibility.  Neither SK, nor OK
could generate anything other than the first map (Figure 5.5b) or the second map if results were
merged manually (Figure 5.5d).

As shown in Figures 5.5e and 5.5f, gradational and fuzzy boundaries can be abrupt.  This is a
numerical phenomenon, not a physical feature.  The problem occurs when the set of nearest
neighboring points are substantially and consistently different.  In this model, this occurs because
sample spacings are close to the range of the zonal semivariogram models.  If the site was modeled
with 1) more data points, or 2) with longer semivariogram model ranges, the contacts would be less
abrupt.

5.3.2:  Yorkshire, England Example

An outcrop cross-section from a fluvio-deltaic deposit near Yorkshire, England was sampled on a
17 x 20 cm grid spacing .  For practical reasons (computation time) the data were upscaled to 2m x
1m grid blocks .  The full 600m x 30m cross-section is shown in Figure 5.6a, and is composed of
three materials: shale (SH), shaley-sandstone (SH-SS), and sandstone (SS).  

To demonstrate the advantages of zonal kriging, the cross-section was ”sampled” with seven
vertical lines representing wells (Figure 5.6b) (1m vertical samples).  Two distinct zones exist: a
lower zone with high continuity in the SS and SH-SS units, and an upper zone dominated by SH,
with small lenses of SS and SH-SS.  To confirm that the spatial statistics were indeed different, the
original section was divided into two zones (Figure 5.6d) based of a fence diagram of the bore-hole
data.  The facies frequencies and semivariograms for the entire cross-section were compared with
those from the two zones. Whether examining the data from the exhaustive data set of the full
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cross-section, or the well samples, the results are similar.  About 61% of the samples are SH, 24%
SH-SS, and 15% SS.  When the individual zones are separated, the distributions are very different:

The top zone contains more than twice as much SH as the bottom zone and almost no SS, whereas
the materials are more evenly distributed in the bottom zone.  When semivariograms are calculated
for the entire section, and for the top and bottom zones, using both the full cross-section and the
well data, the zonation is again apparent.  The horizontal and vertical indicator semivariograms are
shown in Figures 5.7 through 5.10.  The spatial statistics of the top zone are clearly different than

FIGURE 5-6. Model definition information for the Yorkshire cross-section:  a) actual cross-section
sampled with 2m x 1m cells; the locations of b) 7 and c) 10 “well samples;” d) zone definition.
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those of the bottom zone, and those of the entire cross-section.  The horizontal range for the SH/
SH-SS threshold in the top zone is only about 15% to 25% that of the bottom zone (Figures 5.7 and
5.9).  For the SH-SS/SS threshold, the horizontal range in zone 1 is about 35% of that in zone 2
(Figures 5.8 and 5.10).  

The assumption of stationarity is not applicable to this cross-section, thus modeling this site using a
single set of semivariograms is statistically inappropriate.  Two ensembles of 100 realizations each,
demonstrate that zonal kriging yields more accurate results than a single semivariogram model.
The first ensemble is based on the assumption that stationarity is valid, and only one semivariogram
model set is required (the full well data set semivariogram models, Figures 5.9 and 5.10).  The
second set is based on the observation that stationarity is violated between zones, but is valid within
each zone, thus a sharp transition is assumed, and the ”Top” and ”Bottom” semivariogram models
(Figures 5.9 and 5.10) are used.  The ranges of both horizontal and vertical semivariograms, in the
top zone are much shorter than the ranges for the full section and the bottom zone.  The model grid

FIGURE 5-7. Exhaustive experimental and model indicator semivariograms for SH/SH-SS threshold
(full cross-section) of the Yorkshire data set.
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matches the original cross-section grid exactly; with cells 2m x 1m in 300 columns and 30 layers.
Results of several realizations using one and two zones respectively, are shown in Figures 5.11 and
5.12.  Differences between the two sets are subtle, but discernible in the top zone.  There are
differences in the bottom zone, but they are minor.  To evaluate the results, realization pairs were
compared in order (Realization #1 [1 Zone] vs. #1 [2 Zones], #2 [1 Zone] vs. #2 [2 Zones], etc.)
because matched realizations use the same ”random” search path to evaluate the grid, and start
using the same random seed.  Therefore differences are only attributed to the use of zoning, and the
realization with the smallest number of misclassifications, is defined to be the more accurate model.
The number of misclassifications was calculated by subtracting the actual grid value from the
estimated grid value at each grid location; any cell with a non-zero error was misclassified.

In the four realizations shown (using either method), there is a largely continuous SH-SS/SS unit in
the bottom zone, which is present in the actual section, though there are random fluctuations in the
realizations.  The random fluctuations in the realizations are due to the large nugget terms (up to

FIGURE 5-8. Exhaustive experimental and Model indicator semivariograms for SH-SS/SS threshold
(full cross-section) of the Yorkshire data set.

Model Parameters
Nest Range C Model
2 295 0.0226 Spherical
1 86.1 0.0393 Spherical
Nugget 0.0512

100 200 300 400 500 600
0.00

0.05

0.10

Exhaustive Yorkshire Cross-Section Indicator Semivariograms: SH-SS/SS Threshold
Horizontal

Full Data Set

ga
m

m
a 

(h
)

Model Parameters
Nest Range C Model
1 5.4 0.0791 Spherical
Nugget 0.0342

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

Vertical

Model Parameters
Nest Range C Model
1 29.8 0.0153 Spherical
Nugget 0.00763

200 300 400 500 600
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Top

ga
m

m
a 

(h
)

Model Parameters
Nest Range C Model
1 2.4 0.0112 Spherical
Nugget 0.0117

0 5 10 15 20 25 30
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Model Parameters
Nest Range C Model
1 86.1 0.0981 Spherical
Nugget 0.0981

0 100 200 300 400 500 600
0.00

0.05

0.10

0.15

0.20

0.25
Bottom

Lag Distance (meters)

ga
m

m
a 

(h
)

Model Parameters
Nest Range C Model
1 3.6 0.144 Spherical
Nugget 0.052

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

Lag Distance (meters)



T-4595:  Colorado School of Mines 125

5.3: Examples

64% of variance) in the model semivariograms.  The difference between the lower portions of the
two series of simulations is minor, because the global semivariogram models are fairly similar to
the semivariogram models for the lower zone.

There are greater differences between the one and two zone simulations in the top zone.  Both
exhibit a great deal of randomness due to large nuggets, but the results of using two zones create
more solid lenses without as many small isolated cells (compare the single and two-zone versions
of realization #66, this was one of the most accurate models, and #22, one of the least accurate).
The single zone model tends to create long, thin layers with considerable scatter, as compared to the
more connected, but less laterally continuous units in the upper section of the two zone realization.

One-hundred pairs of realizations (one zone and two zone) were generated using the same random
number sequence, and random path through the model grid.  These pairs were compared to the
actual cross-section.  Realizations generated with the two-zone approach had fewer (10 to 328; both

FIGURE 5-9. Sub-sampled experimental and Model indicator semivariograms for SH/SH-SS
threshold (well data) of the Yorkshire data set.
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methods consistently, correctly, identified about 5700 of the 9000 cells) misclassifications in 80 of
the 100 pairs.  When ten equally spaced wells (Figure 5.6c) were used with the same
semivariogram models, instead of the original seven wells (Figure 5.6b), realizations generated
with the two zone approach had fewer misclassifications in 91 of the 100 pairs (new semivariogram
models may have improved results even more).  The reduced number of misclassifications indicate
that modeling the site with two zones yields better results.  However more work is required to set up
the model (additional semivariogram calculations, data entry, zone definition).  

In addition to improved accuracy, the modeler has more flexibility in fine tuning the model
solutions for each zone.  The results can be dramatic in one zone without affecting the other.  A
sample two-zone realization is shown in Figure 5.13a.  Realizations resulting from independently
decreasing the nuggets in the top and bottom zones are shown in Figures 5.13b and 5.13c
respectively.  In both cases, the continuity is increased and the random scatter is reduced, without

FIGURE 5-10. Sub-sampled experimental and Model indicator semivariograms for SH-SS/SS
threshold (well data) of the Yorkshire data set.
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affecting the alternate zone.  If these same changes were made on a single zone realization, they
would effect the entire grid, and improvement in one portion of the grid would have to be balanced
against the degradation of the other zone.

5.3.3:  Colorado School of Mines Survey Field Example

Unlike the Yorkshire, England example, field geology is rarely known in such detail.  Usually only
a limited amount of data are available at a site, typically far less than would be desired.  At the CSM
survey field, located on the West edge of Golden, Colorado (Figure 5.14), hard and soft data were
collected to investigate the use of soft data for reducing uncertainty associated with ground water
flow models .  The site contains core and chip data from eighteen boreholes; borehole geophysical
logs; and eight (Figure 5.15 and 5.16), two-dimensional, cross-hole, tomographic sections.  Even
though the site crosses two geologic formations, the site was initially simulated as a single zone .
This was done because a zonal simulation tool was not available.  In this study, zonal kriging is
used in combination with directional semivariograms and class indicator simulation to model the
CSM survey field.

FIGURE 5-11. Realizations from single-zone simulation series.
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FIGURE 5-12. Realizations from two-zone simulation series.

FIGURE 5-13. Impact of altering the semivariogram nugget independently in the top and bottom
zones of a section: a) original simulation section; b) reduced nugget in top zone; c) reduced nugget in
bottom zone.
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5.3.3.1:  Evidence That Zonation is Required

Zonal kriging is needed because 1) the data populations and 2) the spatial statistics of the data from
the two formations are different.  The difference in spatial statistics, applied to kriging, is the most
important reason for using zonal kriging. The data are divided into two data sets along the
formation contact between the Fountain and Lyons Formations.  The contact dips approximately
40° ENE.  The contact is clearly defined on the seismic tomogram cross-sections (Figure 5.17).
The full data set is shown in Figure 5.16 with all data converted to one of eight indicator values.
The indicator values represent discrete sonic velocity ranges; hydraulic conductivity’s (K) were

FIGURE 5-14. CSM Survey Field location map.
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estimated from field and laboratory tests, or inferred from lithologic character and sonic velocity.
Later optimal values of hydraulic conductivity were estimated using inverse flow modeling:

Data sets, for the Fountain and Lyons Formations are shown in Figure 5.18.  Examination of the full
data set does not readily reveal sub-populations (Figure 5.19), but independent examination of data
from the two formations reveals their differences. Indicators #4 though #7 have a high frequency in
the Fountain Formation. In the Lyons Formation, indicators #1 though #4 are more frequent.
Indicators #5 and #6 are poorly represented, and indicator #8 occurs exclusively in the Lyons
Formation.  The difference in the distributions can be explained by the materials the indicator
represent:

The spatial statistics of the indicators also differ between the two formations.  Semivariograms
were calculated for three principle axes (North-South, East-West, and Vertical) for each indicator
threshold.  The semivariogram model results are summarized in Table 5.1a-c.  For all the indicators
(except #8; which does not occur in Fountain Formation) there were significant differences between

Indicator
Sonic Velocity 

(ft/sec)
Initial K Estimates 

(ft/day)
Optimized K Estimates 

(ft/day)

Hard Only Hard/Soft

1 > 10870 0.0011 0.010 0.0020

2 10000 - 10870 0.0011 0.0063 0.00079

3 9050 - 10000 0.0025 0.63 0.050

4 8550 - 9050 0.0043 0.079 1.6x10-5

5 8050 - 8550 0.040 0.025 2.5x10-6

6 7250 - 8050 0.0043 NO NO

7 6060 - 7250 0.40 0.016 0.0040

8 < 6060 7.8 NO NO

NO = Not Optimized

Indicator Material Description

1 Conglomerate (Lyons Formation)

2 Fine to coarse sandstone with conglomerate lenses

3 Fluvial sandstone (Lyons Formation)

4 Very fine to very coarse sandstone

5 No core recovered.  Moderately consolidated with low-moderate clay

6 Two materials: 1) silty sandstone, and 2) poorly sorted sandstone with siltstone 
and conglomerate lenses

7 No core recovered.  Poorly consolidated, low clay material

8 No core recovered.  Well fractured area of any material type.
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the full data set, the Fountain Formation, and the Lyons Formation semivariogram models.  For
class 4, Fountain and Lyons Formation semivariograms, in the North-South direction the ranges are
72 ft. and 18 ft. respectively.  In the East-West direction they are; 27 ft. and 48 ft. respectively.  Not
only are the ranges for the same indicator substantially different, but the principle anisotropy
directions are 90° apart.  Consequently it was concluded that two distinct zones are present at the
site. 

5.3.3.2:  Grid and Model Definition

Single and two zone simulations were conducted. The regular model grid was defined as 80
columns representing 1600 feet in the X direction, 60 rows representing 1200 feet in the Y
direction, and 72 layers representing 144 feet in the Z direction.  The search ellipsoids for locating
data were identical for both zones.  The differences between the models were defined by 1) the
semivariogram models used (Table 5.1), 2) the zone definitions (Figure 5.20), and 3) the quality of
the soft data (Table 5.2).  The first two differences have already been defined.  The final difference
though is less obvious, because the same data are used, however the calculation of the
misclassification probabilities, p1 and p2 for Type-A soft data differ for the threshold and class
simulations.  In this example, the single zone model is simulated using thresholds, and as such, the

FIGURE 5-15. CSM Survey Field site map.  Dots represent borehole locations.  Solid lines identify
location of tomography surveys.
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FIGURE 5-18. CSM Survey Field hard and soft data distributions (converted to indicators) for the
Fountain (a) and Lyons (b) Formations.
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FIGURE 5-19. Distribution of hard and soft (Type-A only) data for full data set and for Fountain and
Lyons Formations regions.
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a).  Single Zone - Threshold - All Models Spherical

East-West North-South Vertical

Threshold Range Sill Range Sill Range Sill Nugget

1.5 81.0 0.118 155.6 0.118 81.0 0.0623 0.0516

2.5 93.0 0.207 126.0 0.207 54.0 0.0061 0.0

3.5 75.0 0.169 174.0 0.246 21.0 0.0468 0.0

282.0 0.0783

4.5 90.0 0.0831 15.0 0.149 3.0 0.0405 0.0

204.0 0.145 99.0 0.0765 47.0 0.0358

5.5 132.0 0.189 12.0 0.158 36.0 0.0692 0.0

48.0 0.0308

6.5 78.0 0.129 15.0 0.129 93.0 0.0284 0.0

7.5 61.5 0.0208 18.5 0.0208 36.9 0.0079 0.0

NOTE: Multi-nested models require two rows.

b).  Fountain Formation - Zone 1/2 - All Models Spherical

East-West North-South Vertical

Class Range Sill Range Sill Range Sill Nugget

1 18.0 0.0353 59.9 0.0353 69.0 0.0353 0.0265

2 15.0 0.0256 30.0 0.0256 21.0 0.0139 0.0297

48.0 0.0115

3 18.0 0.0215 15.0 0.0256 30.0 0.0256 0.0297

60.0 0.0229

4 27.0 0.111 72.0 0.111 72.0 0.111 0.0253

5 15.0 0.0500 57.0 0.100 27.0 0.100 0.0317

156.0 0.500

6 9.0 0.103 36.0 0.137 78.0 0.137 0.000

60.0 0.0353

7 66.0 0.137 27.0 0.137 44.0 0.0786 0.0214

8 74.0 0.142 125.0 0.142 74.0 0.0799 0.0100

NOTE: Multi-nested models require two rows.

TABLE 5.1 a,b. CSM Survey Field threshold (single-zone) and class (two-zone: Fountain 
and Lyons Formation) semivariogram models.
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c).  Lyons Formation - Zone 2/2 - All Models Spherical

East-West North-South Vertical

Class Range Sill Range Sill Range Sill Nugget

1 75.0 0.160 114.0 0.160 75.0 0.160 0.0776

2 54.0 0.0902 12.0 0.0902 42.0 0.0583 0.000

3 84.0 0.148 84.0 0.148 69.0 0.148 0.0141

4 48.1 0.126 18.0 0.126 75.1 0.126 0.000

5 27.0 0.0275 18.0 0.0275 45.0 0.0275 0.000

6 15.0 0.0211 15.0 0.0211 5.0 0.0211 0.000

7 12.0 0.0468 12.0 0.0468 63.0 0.0468 0.00856

8 66.0 0.0410 15.0 0.0410 63.0 0.0410 0.000

NOTE: Multi-nested models require two rows.

TABLE 5.1 c. CSM Survey Field threshold (single-zone) and class (two-zone: Fountain and 
Lyons Formation) semivariogram models.

FIGURE 5-20. CSM Survey Field zone definition.
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Cumulative Probability 

Threshold Hard Soft Difference

1.5 0.1638 0.2306 0.0668

2.5 0.2370 0.3120 0.0750

3.5 0.2706 0.5031 0.2325

4.5 0.3693 0.7306 0.3613

5.5 0.3886 0.8491 0.4605

6.5 0.5066 0.9429 0.4363

7.5 1.0000 0.9748 0.0252

Individual Probability 

Class Hard Soft Difference

1 0.0018 0.0843 0.1317

2 0.0148 0.0710 0.0524

3 0.0000 0.1479 0.1400

4 0.1107 0.2810 0.1552

5 0.0314 0.1919 0.1502

6 0.1697 0.1649 0.0137

7 0.6716 0.0589 0.6159

8 0.0000 0.0000 0.0000

Individual Probability 

Class Hard Soft Difference

1 0.3628 0.3936 0.0308

2 0.1451 0.0888 0.0563

3 0.0748 0.2415 0.1667

4 0.0839 0.1673 0.0834

5 0.0045 0.0347 0.0302

6 0.0544 0.0128 0.0416

7 0.2744 0.0012 0.2732

8 0.0000 0.0541 0.0541

TABLE 5.2. CSM Survey Field threshold (single-zone) and class (two-zone: Fountain and 
Lyons Formation) hard and soft data (Type-A only) sample data distributions.
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p1-p2 values are calculated based on a value being above or below a particular threshold (threshold
#3, Figure 5.21).  The p1-p2 values used in the single-zone, threshold simulations are:

In the two-zone case, class simulation is performed and the p1-p2 values are calculated based on a
value being between two thresholds (class #3, Figure 5.22).  Because classes are more restrictive,
the probability of misclassification is higher and the p1-p2 values will be lower.  This suggests that
the soft data (Type-A) are less useful at reducing the uncertainty in the two-zone model.  As will be
shown, the two-zone simulations produce smaller uncertainties.  The p1-p2 values used in the two-
zone, class simulations are:

In addition to the differences in the p1-p2 values, there are significant differences in the prior hard
data CDF’s and soft data CDF’s.  These differences also affect the realization calculations and are
summarized in Table 5.2.

Threshold Velocity 
(ft/sec) Threshold p1 p2 p1 - p2

6060 7 0.00 0.00 0.00

7250 6 0.56 0.04 0.52

8050 5 0.58 0.05 0.53

8550 4 0.63 0.10 0.63

9050 3 0.84 0.17 0.67

10000 2 0.90 0.17 0.73

10870 1 0.91 0.15 0.74

Velocity Range
 (ft/sec) Class p1 p2 p1 - p2

 < 6060 8 0.00 0.00 0.00

6060 - 7250 7 0.56 0.00 0.56

7250 - 8050 6 0.39 0.04 0.35

8050 - 8550 5 0.25 0.12 0.13

8550 - 9050 4 0.45 0.18 0.27

9050 - 10000 3 0.26 0.13 0.13

10000 - 10870 2 0.38 0.05 0.33

> 10870 1 0.84 0.00 0.84

Note, the less than 6060 ft/sec velocity measurements are only observed in the 
tomography cross sections.  Hard data are not available to for calibration.
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5.3: Examples

FIGURE 5-22. Graphical method for calculating p1 and p2 values for a specific class.  Data from
CSM Survey Field.  Note the similarities between the Class > 10000 and the Class < 9250 diagrams,
and the diagrams in Figure 5.21.  They are fundamentally identical.  This is always the case for the
first and last class and threshold p1-p2 calculations.
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5.3.3.3:  Realizations and Indicator Populations 

To demonstrate the differences in simulations with and without zones, fifty conditional simulations
were calculated for each model assumption (single and two-zone). When evaluating results, it is
reasonable to expect that the calculated data distribution should approximately reproduce the
original data sample population.  Several sets of realizations shown here (Figures 5.23 through
5.28) demonstrate that modeling with two zones yields significantly different results than modeling
with a single zone.  With a single zone, the character of individual indicators is fairly uniform
throughout the site. The Fountain Formation should primarily exhibit indicators 4-7, but the
realization indicator populations poorly reproduced the initial data population when a single zone
was used (Figures 5.24a, 5.26a, and 5.28a vs. Figure 5.19a).  Using two-zones, the Lyons
Formation is dominated by indicators 1-4 and 7, and the indicator populations for each two-zone
model reasonably reproduce the field data distributions (Figures 5.24b-d, 5.26b-d, and 5.28b-d vs.
Figure 5.19a-c). This is not proof, but it strongly suggests that the two-zone realizations are better
approximations than the single-zone realizations.

5.3.3.4:  Minimizing Uncertainty

Another approach to comparing the single and two-zone realizations, is to evaluate which series
produces the smallest uncertainty.  This is done visually and graphically in two steps.  First, the
probability that a particular indicator will occur at any specific location is calculated; and second,
based on these calculations, the maximum probability any individual indicator will occur in a
particular cell is calculated.  The first series of maps are useful for evaluating where a particular
indicator is likely to occur, and the second series is useful for identifying areas of the site where the
modeler can be relatively certain or uncertain about the model results.

The maps in Figures 5.29 and 5.30 were developed by combining the results of 50 realizations into
individual indicator probability maps. The difference resulting from using a single zone and two
zone model was most pronounced with indicators #1 and #6. From the maps, it can be seen that the
single zone realizations do not identify a transition of indicator frequency across the site; the
uncertainties are fairly uniform except immediately near conditioning data.  In the two-zone
realizations, there are distinct differences.  There is a high frequency of indicator #1 in the Lyons
Formation (indicator #1 identifies two conglomerate Lyons Formation facies), consequently most
cells have a relatively high probability of being indicator #1. Indicator #6, is rare in the Lyons
Formation, thus its relative probability of occurrence to the Fountain Formation is low. 

Ideally zonal kriging will yield more definitive results. The maps in Figure 5.31 indicate the
maximum probability any particular indicator will occur in each cell.  Visually, for the single-zone
simulations, the only areas of low uncertainty are near the hard and soft conditioning data; in the
two-zone model though, the improved definition of indicator #1, has reduced much of the
uncertainty (green areas indicate much lower uncertainty than blue areas) in the Lyons Formation
(right).  Comparing the histograms from the single and two-zone simulations (Figures 5.32a and
5.32b), the two-zone model have fewer low probability cells, and substantially more mid-
probability and high probability cells.  The two-zone model exhibits a bi-modal distribution of
uncertainty, due to separate populations from the two formation zones (Figures 5.32c and 5.32d).
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5.3: Examples

FIGURE 5-23. Single-zone and two-zone realization pair #19.
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From these histograms (Figure 5.32) we can see that most of the model uncertainty reduction is due
to the improvement in the definition of the Lyons Formation.  The Fountain Formation uncertainty
is slightly less than occurs when the entire site is modeled with a single-zone.  These histograms
imply that there is less uncertainty in the two-zone model which suggests the realizations have
improved.  Without further exploration or groundwater flow modeling, however, it is not possible to
confirm this conclusion.

FIGURE 5-24. Distribution of indicators a) in the single-zone realization #19 (Figure 5.23a) and b-d)
in two-zone realization #19 (Figure 5.23b).  The single-zone realization poorly reproduces original
data distribution (Figure 5.19a), whereas the two-zone realization reasonably reproduces the full and
individual formation distributions (Figure 5.19a-c).
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5.3: Examples

FIGURE 5-25. Single-zone and two-zone realization pair #27.

5988.00

5916.00

5844.00

E
le

va
tio

n

2042.50

2122.50

2202.50

2282.50

2362.50

2442.50

Easting

4525.50

4465.50

4405.50

4345.50

4285.50

4225.50

Northing

1

2

3

4

5

6

7

8
Single Zone: Realization #27

Angle Above Horizon: 31 degrees
Viewing Direction: 37 degrees
Exaggeration: 1.1
Zoom: 1

Grid North

5988.00

5916.00

5844.00

E
le

va
tio

n

2042.50

2122.50

2202.50

2282.50

2362.50

2442.50

Easting

4525.50

4465.50

4405.50

4345.50

4285.50

4225.50

Northing

1

2

3

4

5

6

7

8
Two Zones: Realization #27

Angle Above Horizon: 31 degrees
Viewing Direction: 37 degrees
Exaggeration: 1.1
Zoom: 1

Grid North



ZONAL KRIGING Wingle

146 T-4595:  Colorado School of Mines

5.4:  Steps to Determine if Zonal Kriging is Appropriate

Before using zonal kriging, it is important to determine whether the statistics of the data suggest
that zonation is appropriate.  Several items to consider are whether:

• a visual display of the field geologic data suggests distinct zones. 

• the full data set exhibits a bi/multi-modal population frequency distribution.

• there are statistical differences between the populations in each suspected zone.

FIGURE 5-26. Distribution of indicators a) in the single-zone realization #27 (Figure 5.25a) and b-d)
in the two-zone realization #27 (Figure 5.25b).  The single-zone realization poorly reproduces
original data distribution (Figure 5.19a), whereas the two-zone realization reasonably reproduces the
full and individual formation distributions (Figure 5.19a-c).
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5.4: Steps to Determine if Zonal Kriging is Appropriate

FIGURE 5-27. Single-zone and two-zone realization pair #44.
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• the frequency distribution between the populations in each of the suspected zones varies
significantly.

• the spatial statistics (semivariogram models) vary significantly between zones. 

If these conditions exist, consider using zonal kriging.

FIGURE 5-28. Distribution of indicators a) in the single-zone realization #44 (Figure 5.27a) and b-d)
in the two-zone realization #44 (Figure 5.27b).  The single-zone realization poorly reproduces
original data distribution (Figure 5.19a), whereas the two-zone realization reasonably reproduces the
full and individual formation distributions (Figure 5.19a-c).
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5.4: Steps to Determine if Zonal Kriging is Appropriate

FIGURE 5-29. Maximum probability of occurrence of indicator #1 for single-zone and two-zone
realizations.  In the single-zone model, the uncertainty is fairly consistent throughout the site except
near hard and soft data locations.  There are significant differences between the zones in the two-
zone map.  The Lyons Formation has a much higher percentage of Indicator #1, and this is reflected
in the maximum probability map.
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FIGURE 5-30. Maximum probability of occurrence of indicator #6 for single-zone and two-zone
realizations.  Note, in the single-zone model, the uncertainty is fairly consistent throughout the site
except near hard and soft data locations.  There are significant differences between the zones in the
two-zone map.  The Lyons Formation has a much lower percentage of Indicator #6, and this is
reflected in the maximum probability map.
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5.4: Steps to Determine if Zonal Kriging is Appropriate

FIGURE 5-31. Maximum probability of occurrence of any indicator.  In the single-zone model,
uncertainty is fairly uniform across the site except near hard and soft data locations.  In the two-zone
model, the Lyons Formation exhibits significantly lower uncertainty.  These maps are useful for
identifying the spatial distribution of uncertainty.
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FIGURE 5-32. Distribution of the maximum probability of occurrence of any indicator.  The two-
zone model (b) has fewer low probability cells and more mid-probability cells than the single-zone
model (a).  This implies the two-zone model has less uncertainty, and is therefore a better solution.
The two-zone histogram also has a bi-modal distribution (b), and the populations may be separated
by formation (c and d).  Most of the model improvement comes from improved definition of the
Lyons Formation.
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5.5: Conclusions

5.5:  Conclusions

Through a series of examples, it has been shown that zonal kriging can yield significantly different
results than those obtained using SK or MCIS alone.  At sites where the assumption of stationarity
is not valid, correctly applied zonal kriging produces realizations that more accurately represent site
conditions with greater certainty.  The technique requires additional data processing to define the
model, and unusual boundary effects may occur when sample data are sparse or are located at
spacings near the range of the semivariogram models.  These shortcomings, however are offset by
the increased certainty, improved accuracy, and modeling flexibility.
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CHAPTER 6 UNCERT:  GEOSTATISTICAL, 
GROUND WATER MODELING, 
AND VISUALIZATION 
SOFTWARE

UNCERT is an uncertainty analysis, geostatistical, ground water modeling, and visualization
software package.  It was developed for evaluating the uncertainty associated with the
characterization and prediction of subsurface geology, hydraulic properties, and the migration of
hazardous contaminates in groundwater flow systems.  The package is well suited for evaluating
hazardous waste sites and evaluating remediation methods, but it also includes general modules
which are usable by researchers from a wide range of disciplines.

6.1:  Introduction

UNCERT is a collection of software program modules designed to work together to aid ground
water modelers through the data analysis, site modeling, and site evaluation processes.  A flow chart
of the basic UNCERT processes is shown in Figure 6.1.  Many of the tools are also applicable to
scientists and engineers from many other fields such as mining, oil exploration, meteorology, and
criminology.  

6.2:  Previous Work

Much of the programming in UNCERT is original work, some of which has been described in
previous chapters, but some of the codes are taken from or based on previous work. Software code
from other sources, was either 1) public domain, 2) offered with unrestricted use such that
copyright notice remained intact and was referenced, 3) transferred to me with permission from the
author or the authors agent, or 4) a previous code/algorithm was used as a reference, and original
code was written.  These resources are described in Appendix G of the UNCERT User’s Manual
(Appendix A, CD-ROM) and are summarized below:
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FIGURE 6-1. Detailed flow chart of uncertainty analysis software package.
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6.3: Platform Support

• Three-dimensional rotations and transformations for 2D and 3D visualization.  The
algorithms are based on work by Foley, et. al. (1984).

• MODFLOW (McDonald and Harbaugh, 1988).
• MT3D(Zheng, 1990).
• Simple and ordinary kriging algorithm ktb3d (Deutsch and Journel, 1992).
• Irregularly spaced data semivariogram algorithm gamv3 (Deutsch and Journel, 1992).
• Regularly gridded data semivariogram algorithm gam3 (Deutsch and Journel, 1992).
• Indicator conditional simulation program sisim3d (Gómez-Hernández and Srivastava,

1990; McKenna, 1994).
• Contouring and spline algorithm (Wessel and Smith, 1991).
• Rotated text (Richardson, 1993).
• Text editor/viewer program editor (Heller, 1991).
• HTML help browser (NCSA, 1993; Punin, 1994).
• Linear algebra routines from LINPACK (Dongarra, Bunch, et al., 1984).

6.3:  Platform Support

In selecting a development platform for UNCERT, two main issues were of concern; portability and
processing power.  To balance these two issues, UNIX computers, ANSI-C compilers, the
Postscript printer language, and the X-windows/Motif graphical user interface was selected.  UNIX
computers were selected because they 1) had the processing power required by many of the tasks in
UNCERT, 2) supported true multi-tasking, and 3) at the beginning of the project, offered one of the
best, high resolution graphical work environments.  ANSI-C was selected for its 1) computational
efficiency, 2) structured programming capability, and 3) portability between platforms.  Some
programs and code segments were left in FORTRAN, because translating these sections would
serve little purpose, cost time, and potentially introduce software errors. Postscript was selected for
printer output, because it is 1) a non-hardware dependent printer language and 2) a standard in the
UNIX environment.  X-windows (developed at MIT) and Motif (developed by the OSF (Open
Software Foundation)) were selected as the window manager interface because they have become
an industry standard on UNIX computer systems.  As a standard, software developed on one
system, is easily ported between platforms. 

UNCERT has currently been tested on, and is running on eight different 32-bit UNIX platforms
(Data General, Dec, IBM RISC-6000, HP, Linux, SGI, Solaris, and SUN) using native ANSI-C and
FORTRAN compilers, and gcc (a public domain ANSI-C compiler, (GNU, 1995)) and f2c (a public
domain FORTRAN77 to ANSI-C converter (Feldman, Gay, et al., 1990)).
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6.4:  UNCERT Modules

Below are descriptions of each of the modules in UNCERT and a brief discussion of the
mathematical techniques used.  For a complete description of each module, refer to the UNCERT
User’s Manual (Appendix A: Attached Tape).  This is an HTML (Hyper-Text Markup Language,
NCSA (1993)) document, viewable on a wide range on freeware and commercial World Wide Web
(WWW) browsers available on Microsoft-Windows, UNIX, and Macintosh platforms.  Current
versions of UNCERT and the User’s Manual may also be viewed or downloaded from the WWW,
from:

http://uncert.mines.edu/

or by using anonymous ftp from:

ftp://uncert.mines.edu/pub/uncert/manual/           

Listed below is a brief description and summary of the features of each UNCERT module.

6.4.1:  Mainmenu

The mainmenu module is a simple user interface to execute the different modules in the UNCERT
software package.  It is designed to be a user friendly interface, so that user’s can progress through
the software to evaluate their field data, and to model the site of concern.  

Currently mainmenu is a very simple interface which allows the user only to execute the different
software modules within UNCERT.  As it stands now, mainmenu is used mainly as a convenience in
executing software which the user may not be familiar with, and allows the user to minimize
working in the UNIX command line environment.  It is a simple attempt to bring the entire
UNCERT package together into a unified, windows based environment.  It is not recommended that
the user try to use this interface exclusively.  A great deal of functionality in the software would be
lost, trying to do so.

6.4.2:  Plotgraph

The plotgraph application is used for plotting two-dimensional X-Y graphs.  The application allows
the user to plot lines, points with various symbols, and calculate regression lines (up to a tenth order
polynomial).  The data can be plotted using normal, semi-log, and log-log axes. 

6.4.3:  Histo

The histo application is used to calculate and display univariant statistics for different data sets.  For
a sample population, histo can be used to calculate basic statistics such as the mean, standard
deviation, and variance.  It may also be used to display the behavior of several different populations
at once using stacked histograms, cumulative distribution plots, probability plots, and box and
whisker plots.
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6.4.4: Distcomp

The distcomp application calculates all of the statistical information calculated by histo, but focuses
on how sample populations vary between different data sets.  For a multiple sample population
distcomp can be used to calculate basic statistics such as the mean, and variance.  It may also be
used to display the behavior of several different populations at once using stacked histograms,
cumulative distribution plots, probability plots, P-P (probability vs. probability) plots, and Q-Q
(quantile vs. quantile) plots.

6.4.5:  Vario

The vario application is used for calculating one- and two-dimensional experimental
semivariograms for scattered and regularly gridded data.  The package is not limited to the classic
semivariogram but will also calculate covariances, madograms, rodograms, cross-semivariograms,
etc.  Jackknifing the sample data set is also an option.  Three types of soft indicator data can be used
with hard data to calculate spatial continuity.  The application displays the measure of covariance
(γ(h)) versus lag.

6.4.6:  Variofit

The variofit application is used to fit model semivariograms to experimental and jackknifed
experimental semivariograms (generated by vario).  This can be done manually or automatically
using least-squares regression or latin-hypercube sampling techniques.  Ergodic variations of the
model semivariogram from simulation series may also be evaluated.

6.4.7:  Grid

The Grid module interpolates parameter values at locations were there are no physical data.  This is
done using various interpolation algorithms (inverse-distance, kriging, trend-surface analysis)
based on irregularly spaced data.  Sometimes it is of interest to estimate what is occurring between
data locations.  For other applications, for convenience, or for clarity, irregularly spaced data must
be interpolated onto a regular grid.  For example contour, surface, and block require that the data
being viewed be gridded with a rectangular pattern.  These programs then allow the user to visually
view the interpolated estimate of the field data.  Grid is used to interpolate values at locations of
convenience based on field data.

Within grid there are several gridding algorithms; inverse-distance, simple and ordinary kriging,
and trend-surface analysis.  Inverse-distance is a relatively simple method which estimates the
value of a location based on the distance and value of surrounding sample data points.  Kriging
does much the same thing as inverse-distance, except kriging also considers spatial statistics
describing how the field data vary spatially.  Kriging is often referred to a the best unbiased
estimator for evaluating a value at a given location.  Trend-surface analysis is a least-squares
regression technique which assumes the data values are a function of a “regional” trend with minor
“local” variations.  The calculated trend-surface attempts to describe the “regional” component.
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6.4.8:  Contour

The contour application contours and performs gradient analysis for two- and three-dimensional,
regularly gridded data.  Only two-dimensional views are possible however.  Three-dimensional data
sets can be viewed along X-Y, X-Z, and Y-Z planes.  Profile lines along the contoured surface can
also be plotted.

6.4.9:  Surface

Surface  is a 2-1/2 dimensional visualization program for viewing regularly gridded data as a color
contoured , gradient, or shaded relief surface.  It is included in the UNCERT software as a tool to
view two-dimensional grids as three dimensional surfaces.  This is referred to as a 2-1/2
dimensional surface because for each X-Y grid location, there is only one Z value.  In a true 3D
model (see block) each X-Y location may have multiple Z values.  This package is used to view
gridded surface data generated from grid, or for examining layers or cross-sections from sisim,
MODFLOW (McDonald and Harbaugh, 1984), and MT3D output files.  Surface may also be used
to display any regularly gridded data from other sources (some data file format manipulation maybe
required); DEM’s (Digital Elevation Model’s) are an example.

6.4.10:  Block

Block  is a 3-dimensional visualization program for viewing regularly gridded data or scattered data
points and lines (both cannot be viewed at the same time).  It is included in the UNCERT software
as a tool to view the values in three-dimensional grids as three dimensional blocks.   This package
is used to view gridded block data generated from grid or for examining output from sisim,
modmain, and mt3dmain. 

6.4.11:  Sisim & Sisim3d

Sisim is a graphical user interface (GUI) for sisim3d, an indicator kriging and conditional
stochastic simulation program for discrete data (non-continuous data: e.g. clay, sand, gravel)
developed at Stanford University by Gómez-Hernández and Srivastava (ISIM3D, 1990) and
modified at the Colorado School of Mines by McKenna (1994) to utilize soft data.  Up to eight
indicators can be modeled in a single simulation.  In its basic form sisim3d can be awkward to use,
particularly when many simulations are required  based on varying semivariogram models.  This
interface assists the user in handling data files, input parameters, coordinating multiple simulations,
tasking jobs to other computers, calculating simulation statistics, and visualizing results.

6.4.12:  Modmain

Modmain is a graphical user interface for MODFLOW, the MODular three-dimensional, finite
difference FLOW model developed by the United States Geological Survey (McDonald and
Harbaugh, 1988).  MODFLOW is a program designed to model ground water flow and heads
(pressure and elevation) in confined and unconfined aquifer systems.  In its basic form,
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MODFLOW can be difficult, or awkward to use.  The modmain program module is designed to
simplify data entry, model editing, and analysis of results.

6.4.13:  Mt3dmain

Mt3dmain is a graphical user interface for MT3D, a modular three-dimensional transport program
(Zheng, 1990).  MT3D is a program designed to model contaminant transport based on a pre-solved
ground-water flow model (MODFLOW is often used to solve the ground water flow equations.
MT3D uses the solution aquifer heads to base the transport results).  In its basic form, MT3D can
be difficult, or awkward to use.  The mt3dmain program module is designed to simplify data entry,
model editing, and analysis of results.

6.4.14:  Array

The Array module is used to manipulate mathematically one, two, or a series of block, sisim,
contour, or surface 2D or 3D grid files.  Depending on the options selected, operations include
addition, subtraction, multiplication, division, averaging, minimum, maximum, probability value
within a range, reclassification, and basic statistics.  These are basic grid tools similar to those used
in Geographical Information System (GIS) software.  This tool can be useful for data preparation,
or for data and result analysis.  For example, by reclassifying a contaminant plume map to a cost of
remediation map, estimates can be made about site clean up costs.

6.4.15:  Utilities

In addition to the main modules, there are also several utility modules: calc, lpr_ps, ps_merge,
editor, and xhelp.  These are very simple user-aid utilities.  Calc is a simple RPN scientific
calculator.  Lpr_ps is used to print ASCII text files with variable margins, line numbers, and
variable font sizes.  Ps_merge is used to combine, translate, and scale two UNCERT Postscript files
into a single Postscript file.  Editor is a simple text editor.  It is convenient for viewing wide (132
column) and extremely large files.  Xhelp is a simple HTML viewer, though it does not display any
graphics figures.



UNCERT: GEOSTATISTICAL, GROUND WATER MODELING, AND VISUALIZATION SOFTWARE Wingle

162 T-4595:  Colorado School of Mines



T-4595:  Colorado School of Mines 163

CHAPTER 7 SUMMARY AND 
CONCLUSIONS

This research presents several new geostatistical methods for modeling subsurface site conditions
and a geostatistical ground water modeling and visualization software package.  The overall goals
of developing these methods and tools are to better define site uncertainty, reduce site uncertainty,
or simplify the process of modeling site uncertainty.  These methods assist hydrogeologists in
defining uncertainty in the ground water flow and contaminant transport modeling process, so that
risks can be more accurately accessed and appropriate remediation methods can be better designed.
Many of these methods and tools are also applicable to other scientific disciplines.

7.1:  Summary and Conclusions

Jackknifing the semivariogram, with small data sets (10’s to 100’s of samples), can be useful in
describing the uncertainty associated with the definition of the model semivariogram.  It can be
combined with Latin-Hypercube Sampling and conditional indicator simulation to model overall
site uncertainty, but its most useful feature may be facilitating quantitative evaluation of when
enough data has been collected at the site to sufficiently describe the site spatial variation.

Directional semivariograms more accurately model the spatial variation of the sample data.  Instead
of defining a single semivariogram model for the principle axis of site variability, and forcing the
orthogonal axes of variation to use the same model adjusted with anisotropy factors, each
orthogonal axis may be described and modeled independently.  This simplifies the modeling
process for the modeler, because it is not necessary to compromise by selecting one model that
acceptably depicts all orientations.  This advantage is partially offset, by the overall computational
effort in the kriging process, because overall processing time approximately doubles.  This is a
reasonable tradeoff, because 1) modeler time is usually more valuable than computer time, and 2)
most importantly, results are more accurate.

Class conditional indicator simulation, versus threshold conditional indicator simulation, doesn’t
appear to reduce model uncertainty nor improve model results, yet, it is a, valuable tool, because; 1)
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it is a more intuitive approach to defining and modeling indicator semivariograms; 2) it facilitates
testing of model sensitivity to indicator ordering; and 3) it can be argued that, although the
technique generates more order relation violations,  these may more accurately represent the true
number of problem matrices in the solution.  In some situations, the threshold method fails to
identify problems associated with the matrix solution.

Zonal kriging addresses a common limitation of the geostatistical method at many sites.  The
sample data at many sites, do not honor the assumption of second-order stationarity, that is, the
spatial variation of the data, as described by the experimental semivariogram, varies across the site.
The zonal kriging method developed in this research automates some of the methods previously
performed manually to address this situation, and adds several new tools to cope with transitions
between zones.  Again, by allowing the modeler to more accurately describe site conditions, this
technique generates more accurate site estimates.

The UNCERT software package incorporates all the methods described above in addition to other
statistical and geostatistical methods, ground water flow and contaminant transport models, and
visualization tools.  This package simplifies the data handling, and the use of complex tools, thus
aiding hydrogeologists in site evaluation and remediation design.  It is also useful to scientists from
other scientific disciplines. 

7.2:  Recommendations for Future Work

There are several aspects of this research that could be further developed.  Some relate to how the
methods were tested and evaluated, while others relate to limitations of the methods themselves. 

First, the methods developed here are tested and evaluated under the premise that if uncertainty is
reduced, ground water flow and contaminant transport model results will be more accurately match
site conditions.  This is a reasonable supposition, but it may not be true.  Intuitively, a model with
less uncertainty better describes true site conditions.  The model results from these techniques
should be tested using flow and transport models at controlled sites, to test this premise.  The
questions to ask are: 1) do these methods produce more consistent and more accurate results, 2) do
they help reduce uncertainty in defining contaminant migration pathways, and 3) when inverse
parameter estimation methods are implemented, are the sensitivities for the estimated parameters
reduced?  

Two other issues that should be further researched relate specifically to the class and threshold
conditional simulation methods.  It is argued that, although the results between the methods are not
identical, the methods produce substantially the same results.   This conclusion is based on two
observations.  One is that the differences between the methods are approximately equivalent to the
differences using the same method, with a different indicator ordering.  Because ordering is
arbitrary, theoretically it should not affect model results, however, there were small, local,
differences for the limited number of simulations calculated (50 to 200).  It would be useful to test
and confirm that the differences due to indicator ordering, or class vs. threshold techniques, become
smaller as the number of simulations is increased, possibly to 1000 or more.  This was beyond the
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scope of this research due to limited computing facilities.  The second observation related to the
model differences, involves the significant differences in methods for resolving the order relation
violations in the class and threshold simulations.  Some of these differences can probably be
eliminated, but they cannot be completely eliminated due to the nature of the two approaches.

Finally the procedure for handling gradational and fuzzy transitions between zones is simplistic,
but functional.  When a cell is estimated, points from neighboring zones may be used in the kriging
calculation.  The equation used to described the spatial variance between the sample point and the
cell being estimated, is the semivariogram model for the zone in which the cell is located.  This
disregards 1) the relative amount of separation distance in each zone, and 2) the possibility that a
sharp bounding zone separates the point and the cell.  These conditions were ignored for
computational efficiency, but most importantly, due to concerns that the kriging matrix could no
longer be guaranteed to be positive definite.  This last issue however was not explored, but could be
investigated in future work.
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APPENDIX A UNCERT AND UNCERT 
USER’S MANUAL

The UNCERT software package and User’s Manual (Version 1.20) are contained on the CD-ROM
at the back of the dissertation.  UNCERT is still a growing software package though, and I
recommend that if you want to use it, you download the most recent version from the ftp site
described below.  The instructions below are designed for someone downloading the software from
the internet using anonymous ftp.  Special instructions for retrieving the software from the CD-
ROM will be described in italics.

A1:  Information and Comments:

This is a freeware software package, so there is little technical support. However, we are trying to
make this package as useful as possible, and if you have questions or comments contact Bill Wingle
at:

e-mail wwingle@mines.edu

or

Department of Geology and Geological Engineering
Colorado School of Mines
Golden, Colorado 80401
(303) 273-3905
(303) 273-3859 (FAX)

If you find software bugs, or better yet, fix software bugs, please contact us so that we can improve
future releases. 
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A1.1:  Warranty:

The UNCERT package, the program modules within, and the user’s manual are distributed in the
hope that they will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts
any responsibility to anyone for the consequences of using them or for whether they serve any
particular purpose or work at all, unless stated so in writing by the authors. No author or distributor
accepts responsibility for the quality of data generated, nor the damage to existing data. Everyone is
granted permission to copy, modify, and redistribute the UNCERT package, but only under the
condition that the copyright notice in the software remain intact. The software is provided “as is”
without express or implied warranty.

A2:  Hardware / Operating System Requirements:

The UNCERT software package was written in ANSI C and FORTRAN (very little) using X-
windows and motif under the UNIX operating system. Currently the software has been tested on
IBM-RISC 6000, Dec Alpha, Data General (so I’m told), HP, Linux, Silicon Graphics (SGI), Sun
OS, Sun Solaris, and SCO UNIX workstations with 8-bit color graphics cards. The software was
written to be easily ported, and where possible follows ANSI-C standards. To use this software you
must have:

1. UNIX operating system computer.
2. ANSI C compiler and a FORTRAN compiler (A FORTRAN to C preprocessor is

available upon request).  These must be 32-bit compilers.  The new 64-bit compilers
break the software.

3. X-windows Release 4+ and motif Release 1.1+ window manager.
4. X-windows and motif development packages (used at compile time to build X-

windows/motif interfaces).
5. 8-bit color graphics card (allows 256 colors simultaneously).
6. 16 MB’s of RAM.
7. 35 MB’s of free Hard Disk space.

A3:  Acquiring Software:

The software may be acquired on the internet, by using one of the following anonymous ftp or http
addresses:

ftp://uncert.mines.edu/
http://uncert.mines.edu/

For anonymous ftp, the UNCERT software is stored in the directory:

/pub/uncert
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A3: Acquiring Software:

In this directory, releases with executables are available for several UNIX platforms, but only the
file:

uncert.ver_#.##.tar.Z

is guaranteed to be current. I have limited access to most platforms, and all versions may not be
current. Check the dates on the files. The file “uncert.ver_#.##.tar.Z” contains the full UNCERT
release, but no executable files. You will have to compile UNCERT yourself if you retrieve this file.
The UNCERT User’s Manual is located in:

/pub/uncert/manual/

There are also several useful files in:

/pub/misc

that may be useful. These include public domain and shareware programs available from other
locations on the internet. These versions may not be the most recent, but they may save you time
trying to locate them elsewhere. These files include f2c (a FORTRAN to C preprocessor), gcc (an
ANSI C compiler. You need a C compiler to build it), gs (a Postscript previewer), xv (a GIF/JPEG
viewer), and gzip (a good compression utility). There are other files too.

A typical anonymous ftp session might look like:

your prompt > ftp uncert.mines.edu

user name: anonymous
password: (your e-mail address, e.g., wwingle@mines.edu)

ftp > binary
ftp > cd /pub/uncert
ftp > get uncert.ver_1.20.tar.Z
ftp > quit

If you want to recover UNCERT from the CD-ROM, there are several steps you must follow.  You
may need to have root privilege to mount and unmount the CD-ROM.

1). Mount the CD-ROM.  On IBM RS-6000 workstations, you must have root permission.
Use the following commands:

prompt> su -

prompt> mkdir /cdrom
prompt> mount -v ‘cdrfs’ -p’’ -r’’ /dev/cd0 /cdrom

2). Install UNCERT.  The full UNCERT (IBM-RS6000) release is located in the /cdrom/
uncert/ directory.  All files are directly accessible;  they are not tarred or compressed.
You can now copy it to your computer.  For example:

prompt> cd /usr/local
prompt> cp -pR /cdrom/uncert uncert
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 You do not have to install UNCERT in /usr/local.  This is a common location however. 

3). Unmount CD-ROM.  This will have to be done as root also.

prompt> unmount /cdrom

If you are using a system other than an IBM-RS-6000 , the commands for mounting and
unmounting the CD-ROM may vary.  Consult your system administrator.  You will also have to
recompile UNCERT.  Instructions are given below for compiling UNCERT on different UNIX
systems.

A4:  Installation:

Once you have downloaded the UNCERT software there are several steps you need to follow to
install UNCERT: 1) Unpack the software, 2) compile all the UNCERT modules (This step can to
skipped if you downloaded a version with executable), and 3) set up user accounts.

A4.1:  Unpacking the Software:

Once you have downloaded the UNCERT package file, move it to the directory above where you
want UNCERT stored (e.g. /usr/local). To unpack UNCERT type:

uncompress uncert.tar.Z
tar xvf uncert.tar

(On Linux computers use: `gzip -d uncert.tar.Z' instead of uncompress)

This will uncompress and un-tar UNCERT. During the tar process, all files will be put in their
appropriate locations. If you get warning that directories cannot be created, you will need to
download a script file called mk_uncert_dirs. This script also needs to be executed from the
directory above where you want UNCERT stored. After running this command, execute the tar
command given above again.

A4.2:  Compiling UNCERT:

At this point you should read the README file in the uncert directory.

If you did not download a file with executables, or you have trouble with the executables you did
download (e.g. cannot find a shared library ..., etc.), you will have to compile UNCERT. Once the
files are unpacked, change directories to the uncert directory, for example:

prompt > cd /usr/local/uncert

If you are not running on an IBM RS-6000 computer, you will need to setup the Makefile’s for each
module. This is done using the following command (select the appropriate command based on your
system):
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prompt> set_make ibm: IBM RS6000
prompt> set_make hp: HP
prompt> set_make sun: Sun OS
prompt> set_make sol: Sun Solaris
prompt> set_make sgi: Silicon Graphics
prompt> set_make sco: SCO
prompt> set_make linux: Linux/Slackware

If your machine type is not listed, you will probably need to modify each Makefile in the
directories:

?/uncert/src/*

This will mainly involve defining where the X-windows and motif library and include files are
located. You may also have to define your C and FORTRAN compilers. Once the Makefile's are
correctly defined, type:

prompt> build

This script will go into each ?/uncert/src directory and try to make each program. This may or may
not work. Several things can go wrong.

1. The Makefile’s do not have the right libraries specified. See if there is a Makefile
specific to your machine (e.g. Makefile.ibm). If there is, copy it to “Makefile.”  If a
correct Makefile does not exist, you may have to determine which libraries are missing.

NOTE: on some computers library order is important.

2. You do not have an ANSI C compiler, or your compiler is named something other than
“cc.”  If you have compiler other than “cc,” set the variable “CC” to your compiler
name.  If you don't have a ANSI C compiler, you can get gcc from our ftp site. gcc is a
shareware C and C++ compiler.  It may take some effort to compile.  Note: our posted
version is not the most recent version.

3. You do not have a FORTRAN compiler or your compiler is named something other
then “xlf” (or “f77”).  If you have a compiler other than “xlf” (or “f77”), set the
variable “F77” to your compiler.  If you don't have a FORTRAN compiler, you can get
f2c from our ftp site.   It is a shareware FORTRAN to C conversion program. You then
compile the C.  Contact me (Bill Wingle) if you have this problem.  I'm still working on
an instruction set.

4. The FORTRAN compiler does not recognize the -qextname compile option. Delete it.
This is an IBM FORTRAN/C compile option.

5. In block, you cannot find su.h, segy.h, libcwp.a, libpar.a, or libsu.a. Remove the -DSU
compile option. This is an option to compile SU (Seismic UNIX) which most users
probably won't have.

Once you get the Makefile’s corrected, you can type “make” in each src directory, or you can type
“build” from the ~/uncert directory.
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NOTE: When you start to port the code, you must do a make in the ?/uncert/src/Xs
directory first. This builds the library libXs.a which most of the programs depend
on. You can then move to any of the other src directories and start compiling
code.

If you are compiling on a non-supported system, I doubt that you will have to make more than a
few changes to get the UNCERT modules compiled.  There are a couple of important notes though.

1. Many of the program directories repeat the same files.  These are common tool object
files that will eventually go into a single library.  Unfortunately I can't keep all of the
files current as I develop UNCERT, therefore, from directory to directory, files may
vary slightly and be incompatible.  This means that if you find a problem in a common
file, you need to change each file, not copy the fixed file to the different directories.

A4.3:  Setting Up User Accounts:

To run the programs correctly, each user will have to have several environment variables defined in
their login file (ksh -> .profile, csh -> .cshrc, etc.).  If you use ksh, they are defined as follows:

export UNCERT=/usr/local/uncert

export PATH=$PATH:$UNCERT/bin

export UNCERT_TMPDIR=/tmp
export UNCERT_HELP_DIR=$UNCERT/help/
export XAPPLRESDIR=$UNCERT/app-defaults/
export WWWVIEWER=xhelp

If you use csh, they are defined as follows:

setenv UNCERT /usr/local/uncert

setenv PATH $PATH:$UNCERT/bin

setenv UNCERT_TMPDIR /tmp
setenv UNCERT_HELP_DIR $UNCERT/help/
setenv XAPPLRESDIR $UNCERT/app-defaults/
setenv WWWVIEWER=xhelp

If you use another shell, you may have to modify the syntax slightly.  On some systems
XAPPLRESDIR can be replaced with (ksh):

export XUSERFILESEARCHPATH=$XUSERFILESEARCHPATH:  \
$UNCERT/app-defaults/%N

On SGI's you must make this substitution.  In general, if your platform supports this option, it is
better than XAPPLRESDIR.

You must also define a help browser.  If you do not define a browser, you will still have on line text
help, but no graphics for figures.  We are currently developing the xhelp package, but we
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recommend you use netscape (Netscape Communications Corporation) or Mosaic (NCSA). These
viewers may be downloaded from: 

http://home.netscape.com/
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/NCSAMosaicHome.html

A version a Mosaic (old) may be downloaded from our anonymous ftp site if you do not have a web
browser.  The ftp site and file are:

uncert.mines.edu

/pub/misc/xmosaic-2.5.tar.gz

At this point netscape has more features, but it is a commercial application, though they have been
letting educational institutions use unlicensed versions.  To define a browser other than xhelp,
modify the WWWVIEWER environment variable described above with one of the following
commands: 

export WWWVIEWER=/usr/local/netscape
export WWWVIEWER=/usr/local/Mosaic

setenv WWWVIEWER=/usr/local/netscape
setenv WWWVIEWER=/usr/local/Mosaic

At this point the UNCERT software should be installed, compiled and ready for use.  In order to set
some of the environment variables it is suggested that you logout and then login before you try to
run the applications.
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APPENDIX B SAMPLE DATA SETS

The data sets used in this research are contained on the CD-ROM at the back of the dissertation.
These files are accessible from UNIX systems (see mounting instructions in Appendix A) and from
DOS/MS-Windows computers with CD-ROM drives.  The files for each chapter are located in the
following directories:

Chapter 2:  Jackknifing and Latin-Hypercube Sampling

/data/jackknife; synthetic test case

Chapter 3:  Variation of the Semivariogram Models With Direction

/data/direct/test; synthetic test case
/data/direct/rma; Rocky Mountain Arsenal test case

Chapter 4:  Class vs. Threshold Indicator Simulation

/data/class/test; synthetic test case
/data/class/survey; CSM Survey Field test case

Chapter 5:  Zonal Kriging

/data/zone/test; synthetic test case
/data/zone/yorkshire; Yorkshire, England test case
/data/zone/survey; CSM Survey Field test case

Chapter 6:  UNCERT

/uncert; full UNCERT distribution
/uncert/html/index.html; on-line UNCERT Users’s Manual

NOTE: The filenames follow UNIX naming conventions.  On DOS and MS-Windows
3.11 (or older) systems, filenames may be truncated or modified.

Descriptions of each data set are contained in README files in each directory.
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