CHAPTER 3 VARIATION OF
FEMIVRIOGRAM MODELS
W TH DIRECTION

When developing semivariogram models, it is often difficult to fit a model semivariogram to both
the principle-axis and the minor-axes using traditional methods with anisotropy ratios. Currently a
single model (possibly nested) is modified with anisotropy factors; these represent the relative
range of the semivariogram for al three orthogonal axes. This technique is restrictive, and this
discussion presents a method for relieving these restrictions by defining different semivariogram
models, independently for each axis. These will be referred to as directional semivariograms. The
process increases the kriging processing time by 80% to 200%, but the method offers the modeler
greater flexibility, and simulations or estimations that are more representative of the site, because
the spatial variation of the data can be more precisely defined.

3.1: Introduction

Semivariogram modeling is the foundation for much geostatistical analysis, and can
also be the most difficult and time consuming portion of the analysis. In part, this is due to the
computationally intensive calculations, but it is also due to the difficulty in defining semivariogram
models which reasonably honor the experimental semivariogramsin the principle and minor search
directions. With the current techniques that use anisotropy factors (Englund and Sparks, 1988;
Journel and Huijbregts, 1978; Deutsch and Journel, 1992), often it is not possible to model all the
orthogonal experimental semivariograms exactly. Consequently compromises are required for the
definition of one, or even all of the models. If the compromises are not too substantial, then this
approach is acceptable, because, generally the kriged results are relatively insensitive to minor
changes in the semivariogram. Though this insensitivity offers some comfort, it is not particularly
satisfying.

This chapter describes a procedure, which allows the modeler to define a unique
semivariogram model for each orthogonal axis of the experimental semivariogram. The algorithm
uses components of each model to determine y(h) values between the axes. Anisotropy factors are
not used; rather the modeler specifies the number of nests, sill and range components, and model
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structure types independently for each axis. The only requirements are 1) the nugget must be the
same for al models, and 2) the total sill must be the same at infinity. These two requirements are
not particularly restrictive. Requiring the nugget to be the same is reasonable, because at zero
distance, direction is irrelevant. The requirement that the total sill components are equal ensures
that the kriging matrix is non-singular. If different sills are desired, then this requirement is met by
defining an arbitrarily large range for the final nest to make up the balance of the sill component.
The error induced by the final nest has no affect on the area of interest.

This technique allows the model er to honor the results of the experimental semivariogram analysis,
thusit is easier to model the data set and the results are more accurate. However, the calculation of
y(h) is substantially more complex than traditional methods, therefore the method requires
computational effort. The additional effort is comparable to the computational effort required for
the search procedure and matrix solution portions of the kriging algorithm so, overall, the task is
only increased by about 80% to 200% (based on observed differences in computation time for
example data sets). Thisis acceptable, because the semivariogram model preparation is simplified,
and the simulations or estimates should more closely honor the spatial statistics of the site.

3.2: Previous Work

Many techniques have been devel oped to estimate values of avariable at locations between sample
points. These techniques are all based on the assumption that properties at unsampled locations are
related to the properties at nearby points where samples have been taken. Some techniques are
inaccurate due to assumptions related to the spatial variation and the relative importance of nearby
data For example, the inverse-distance method states that surrounding data (n = number of
samples) have less importance with increased distance:
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The rate (p) at which increasing distance (d) reduces the influence of a neighboring sample value
(xi) is subject to debate. Various factors for p have been suggested; 1 (linear), 2, 1/x, based on the
modelers previous experience with the technique, and its performance at similar sites.
Consequently the results are subjective.
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Kriging eliminates much of this subjectivity by utilizing the semivariogram as the spatial weighting
function. The variance of the data and the rate of change in variance with direction and distance
can be defined with the equation:
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where y(h) describes spatial variance of all data pairs separated by a distance h. N isthe number of
pairs separated by the distance h, and x; and x;+h are the values at two points in the pair.
Experimental semivariograms are complex, and for practical reasons are represented with one or
more functions selected from a limited number of model types (e.g. spherical, exponential,
Gaussian). These models are used because they guarantee the matrices in the kriging solution will
be positive definite (i.e., the matrix is not singular). Even with these constraints, the semivariogram
isapowerful mathematical tool for describing how avariable variesin space at a particular site.

Although semivariograms could be defined for an infinite number of directions, for practical
reasons, variation is only defined along the principle orthogonal axes (X, Y, Z), creating an
elipsoid. As defined here, the X-axis is equivalent to the direction with the longest range (the
principle axis), and theY and Z-axes (orthogonal to X), have shorter, though not necessarily equal
ranges. Although modeling and solving a more complicated system is theoretically possible, it
would be extremely expensive computationally. To further simplify the solution, the
semivariogram models for the Y and Z-axes have traditionally been described using anisotropy
factors related to the X-axis. This simplification is used extensively in current kriging models
(Deutsch and Journel, 1992; GoOmez-Hernandez and Srivastava, 1990), because it is
computationally efficient, however it compromises accuracy and requires more time of the modeler
when the same semivariogram model does not fit the experimental semivariogram in all directions.
The technique presented here allows the modeler to specify unique semivariogram models for each
axis.

3.3: Theory

Two steps of the kriging process are modified to incorporate directional semivariograms into the
kriging algorithm: 1) the search for nearest neighbors, and 2) the calculation of the covariance
components of the kriging matrix.

Thefirst step in estimating the value for agrid location is to find the influential neighboring points.
For isotropic situations the closest sample points are the best estimators. For anisotropic situations,
the best estimators are those points with the smallest spatial variance calculated from the model
semivariogram (y(h)). Using anisotropy factors, the sample point locations are transformed to
equivalent isotropic space, using a simple transformation and rotation, based on the orientation of
the principle model axis, and the anisotropy factors of the minor-axes. Once transformed, the
estimation variance is solely a function of the distance between the grid location and the sample
point, therefore y(h) doesn’t have to be calculated. Conventional techniques (Deutsch and Journel,
1992; Gémez-Hernandez and Srivastava, 1990), use Pythagoras' Theorem to find the closest points.
When directional semivariogram models are used, direction as well as distance isimportant. When
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different model equations, sills, and structures are used for the orthogonal axes, a simple
transformation and rotation is not possible, because the magnitude of y(h) is not solely related to
distance (Figure 3.1). For this reason, y(h) must be calculated for each sample in the search
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FIGURE 3-1. When directional semivariograms are used, distance alone does not determine the
most influential neighboring points. In this example, al points in the minor model axis direction
(b) that are separated by less than x, (158 m) have smaller y(h)'s than points separated by x; (109
m) on the major-axis (a). The sameistrue for x5 and x, respectively.

neighborhood, and those points with the smallest y(h) values are the best estimators.

Once the most influential neighboring data points have been selected, the kriging matrix is solved
as usual, with the exception of the y(h) calculation. Again, for directional semivariograms, it is not
possible to transform points into isotropic space, therefore component of the individual axes must
be resolved. Whether y(h) is being calculated to determine the most influential neighbors or
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individual components of the kriging matrix, the same technique is used as described in the
following section.

3.3.1 Equation and Proof

Calculating y(h) to determine the nearest neighbors for a grid location, or to define individual
components of the kriging matrix, requires the equation for an ellipsoid:
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(3.3)

Using this equation, it is possible to separate the components of each semivariogram model for any
vector (Figure 3.2). One point is translated to the axis origin, and the second point is positioned at
[x], Iyl, and |z|, along the separation vector (h). Here a, b, and c, represent the maximum practical
ranges of the semivariograms model along the X-, Y-, and Z-axes respectively. In this section only,
when the actual ranges are used the a4, Pactuay 8N Cogya» SUBSCripts will be used. The practical
range refers to the distance where the semivariogram model meets the variance. For the
Exponential and Gaussian models, thisis defined as 95% of the variance. The practical ranges for
different models are defined (Journel and Huijbregts, 1978):

Model Type | Practical Range
Spherical range
Exponential 3 xrange
Gaussian sgrt(3) x range
Linear range

If the unadjusted range and not the practical rangeis used, the axis defined with the model using the
longest practical range will be under-weighted. The equations for determining each component
y(h)x vz and the resultant y(h) are derived below. The components of each axis for each structure of

the nested semivariogram model can be related through the aspect factors:

f=ab (3.49)
g=ac (3.4b)
p=hlc (3.4¢)

Rearranging Equation 3.3, the ellipsoid factors &, b?, and ¢ for the search vector are solved:
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FIGURE 3-2. Directional semivariogram anaysis components.

a? = x2 +12y2 + 222

2 2 2,2
LS A

202 2 p?

2_X2 2,22
b —f—2+y +pz

(3.59)

(3.5b)
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(3.5¢0)

Where @, b, and ¢’ represent the X, Y, and Z-axis intercepts for an ellipsoid passing through an
arbitrary point, (x, y, z) along the same vector, where the aspect rations defined by a, b, and c
remain true, the following relationships are also true:

b b (3.50)
b
= =—=p
C
(3.5¢)
o
E = = g
(3.50)

An additional axis, R, isaso required. R is defined by the intersection of the X-Y plane, and the
vertical plane passing through the point (X, y, z). To determine the semivariogram components, the
point r, which lies on the R-axis, vertically below the point (X, y, z) is defined:

12 = x2 +y?

(3.59)
Two additional points of interest are where the semivariogram model ellipsoid and the ellipsoid
passing through (x, y, z) cross the R-axis; these are d and d' respectively. Defining these two
ellipsoids, with the aspect ratios described above, the components of each semivariogram model
can be derived. One new aspect ratio is needed between the R- and Z-axes.

q=dc (3.6)

The distances a, b, ¢, and d represent the practical model rangeand &, b’, ¢’, and d’ represent the
practical component range along each axis for the point (x, y, z). The parameter d represents the
semivariogram model along the R-axis and is a combination of modelsaand b. Oncea, b, X, and y
are known, then d can be determined. For acircle, the anglef is described as:

— -1y O
@=tan o0

(3.7)
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Usually, the model semivariogram ellipse (X-Y plane) will not be a circle, therefore the anisotropy
must be removed to determine the component angle f. Thisisthe product of y and the aspect ratio
of thedlipse (f in the X-Y plane, major/minor dimension):

_ 1y 0
o=t 5
(3.9)

The components of aand b can then be described by dividing (90° - f) by 90°, and multiplying by b
and g, plusa

a(p comp 90°
(3.9
B comp = gel
(3.10)
The components can then be summed to calculate d':
d = 8¢ comp™* Py comp
4=3""9,, 94
90° 90°
d=a+—tb-—2p
90°  90°
d= g(go(b—a)+a
(3.11)
By expanding f and solving, using radians, the equation may be rewritten:
a0
X —
d= L (b-a)+a
2 (3.12)
d’ can be determined by proportion:
d=d2= dg
a (3.13)

Givendistancesa, b’, ¢, and d', it is possible to solve directly for y(@), y(b’), and y(c'). To solve
for g(d’ eua), the argument isused for d isrepeated, The components of V(& ) aNd V(D' 4eua) €aN
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then be described by dividing (90° - f) by 90°, and multiplying by y(b' ca) @nd (@ xua), PlUS
V(a, actual):

, _90°- ,
V(aactual )(p comp ~ gge (py(aactual )
(3.14)
V(b'actual) = i\/(b’ t al)
@comp ~ gge actu
(3.15)
The components can then be summed to calculate y(d' .4):
y(d,actual ) = Y(@actua )(p comp+ V( 'actual )(p comp
90° -
(d’actual) = 90° (py(a’actual) + %y(b,Mud )
V(d,actual) = y(aactual) 90° V(b’actual) 90° V( actual)
y(d,a:tual ) = 97(80 (y(b’actual ) - y(a,a:tual )) + y(a,actual)
(3.16)
By expanding f and solving, the equation may be rewritten:
tan 110
Ox O
y(d,actual ) = % (y(b’actual) - y(a’actual )) + y(a’actual )
2 (3.17)

To solve for Y(€' ,a), Where € is the distance from the origin to the point (X, y, z), steps similar to
those used to generate d and y(d'4) are required. Allowing y(d actual) to be equivalent to

V(@ aetua)» @A V(€' o) €QUivalent to y(b' ,q), thisyields:

tan"1F90
Or O
y(e'actual ) = %(V(Clactual ) - y(d'actual )) + y(d,actual )

2 (3.18)
These calculation must be evaluated for each nest of the model structure except the nugget (y(h))-
The nugget, having zero distance, by definition is the same for all axes. This also implies that the
number of structures in every direction must be equal. This restriction can be negated by giving
undesired nests a zero variance component and the same range as the previous structure. The final
V(€ xcrua) EStimate is the summation on the nugget and the nested structure components:
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Y(€actua) = iy(e’actud ), ;wheres= number of structures

=0 (3.19)

3.3.2: Positive Definite M atrix | ssues

The models selected for the semivariogram, must yield a positive definite kriging
matrix (Journel and Huijbregts, 1978). If the matrix is not positive definite, there may be no
solution or there may be several different solutions (Isaaks and Srivastava, 1989), and the kriging
variance may be negative (Journel and Huijbregts, 1978). The various model types used here
(spherical, exponential, Gaussian, and logarithmic) have proven to be positive definite both
individually and in combination as nested structures (Journel and Huijbregts, 1978). Although the
equations are merged in a different manner for directional semivariograms than for traditional
kriging, it is assumed that the matrix remains positive definite. In practice, severa indicators used
to determine whether the matrix is not positive definite, are 1) matrices that are singular, 2) have
large positive or negative kriging weights (much larger or smaller then + 1.0), and 3) the occurrence
of negative estimation variances. Proving that the equations are positive definite is a difficult task
(Christakos, 1984; Isaaks and Srivastava, 1989), but in summary, for a symmetric (n X n) matrix to
be positive definite, it must satisfy any one of the following conditions (Burden and Faires, 1985;
Isaaks and Srivastava, 1989; Strang, 1988):

i) x'Ax > 0for all non-zero vectors x.

ii) All theeigenvalues (A;) of A are greater than O.
iii) All the upper left submatrices A, have positive determinants.
iv) All the pivots (d,, without row exchange) are greater than O.

for every n-dimensional column vector x # 0, where A is the kriging matrix, A, is asubmatrix of A,
X is any vector (appropriately dimensioned), and x! is the transpose of x.

3.3.2.1: ProblemsWith the Positive Definite Assumption

Some problems with large positive and negative weights and negative kriging
variances were encountered when Gaussian models were used with the directional kriging method.
Many of the problematic matrices were confirmed to be positive definite based on tests i) and ii).
The problems were attributed to the unstable nature of the Gaussian model with small nuggets
(Ababou, Bagtzoglou, et al., 1994; Posa, 1989). Ababou, et al (1994), state that thisis a common
problem, particularly with Gaussian models that have small nugget values. The kriging matrix
becomes more unstable and approaches singularity at small h values. This tendency can be
estimated using the kriging matrix (A) conditioning number K(A):

K(A) = |[MAX eigenvalue| / IMIN eigenvalue|

36
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The Gaussian model, is one of the most problematic (2 to 14 times worse than hole-exponential
models (which are one of the best) (Ababou, et al., 1994)) and most unstable, and tends to have
minimum eigenvalues near 0.0. Also, because the model is relatively flat at small h values (unlike
all other models), the problem prevails at larger h values than for other models (Posa, 1989).
Because of thisinstability, it is sometimes better to select a model which does not physically fit the
data as well as another model, but is more robust (Posa, 1989).

3.4: Modification of Algorithms

In this project, the GSLIB ktb3dm (Deutsch and Journel, 1992), and SISIM3D (Gémez-Hernandez
and Srivastava, 1990; McKenna, 1994) algorithms were modified to build the kriging matrix using
both anisotropic semivariogram models and directional semivariogram models.

3.4.1: Algorithm Constraints

Although directional semivariogram models relax many of the constraints in defining spatial
variation, there are several limitations. Some of these limitations arise from the theory, and some
from the implementation. The limitations are:

* The number of semivariogram models for each axis must be equal. This is a minor
limitation, because extra models can be added as needed with a zero variance
component, and arange equa to the final desired range. If thisisnot done, there may be
ambiguity in how the semivariogram models are eval uated.

» Thesill for all axes must be equal. Again thisisaminor limitation. If the variance in
one direction is smaller than another in the grid area, the remaining variance component
may be added to the final nest, while the range for the final nest is set to a range much
greater than the size of the simulated area (or the search distance for that matter). This
constraint is required to ensure positive definite matrix solutions.

» Gaussian models may be used with small or zero nugget values, but the modeler must be
aware that the results can be unstable. The algorithm presented here tests for large ()
weights and warns the modeler. The algorithm can remove data points (the point
associated with the largest absolute kriging weight) from the kriging matrix until the
results stabilize, or until there are too few points to estimate the grid location, however
estimates resulting from such elimination should be considered highly suspect (See
Rocky Mountain Arsenal example described below), and one may wish to compromise
and use alarger nugget (often the problem with Gaussian models), or a different model
type al together.
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3.4.2: Computational Cost

Although use of directiona semivariograms is computationally intensive, the increased
computation, is significant, but not excessive. In several test cases, the computation time increased
between 80% and 200%. The increased computation occurs mainly in the search algorithm that
identifies the most influential neighbors for each grid location and in the additiona overhead for
calculating each covariance value of the kriging matrix.

The search algorithm in the traditional technique includes two main steps: 1) transformation of the
sample data to isotropic space, and 2) calculation of the distance between each point and each grid
location being estimated. In addition to these steps, the directional semivariogram technique
requires that y(h) be calculated for each sample point, relative to the position of the grid position
being estimated. To determine the neighboring points with the smallest spatia variances,
traditional techniques calculate only the relative distance between sample pointsin isotropic space,
and the point being estimated. This is adequate, because the spatial variance is only a function of
distance. When using directional semivariogram models, transformed isotropic distances are not
sufficient to rank sample points; direction is also important, thus y(h) for the separation between
each sample and the grid location must be ranked. Calculating y(h) in the search phase, adds most
of theincreased computational effort.

The calculation of y(h) for the kriging matrix also requires additional effort. Although this step is
generally less expensive in computation time than the search step because it is applied only to the
selected nearest neighbor points and not to all points within the search neighborhood.

To solve the kriging problem, the kriging matrix must also be solved using either Gauss elimination
or a more efficient LU decomposition (Alabert, 1987). These calculations are unaffected by the
method used to define the semivariogram models, but because this is a computationally intensive
task, the increased cost due to directional semivariogram modeling is less severe.

3.5: Examples

Several example models and data sets are used to demonstrate the applicability and validity of
using directional semivariogram models.

3.5.1: Comparison With the Classic Method

In addition to the mathematical proof above, it is also important to demonstrate that the algorithm
and the software are correct. Two approaches are pursued to evaluate the algorithm. First,
conditions modeled using anisotropy factors with traditional methods are duplicated using
directional semivariogram models that mimic the anisotropy factors. Then, model results using
directional semivariogram models, that cannot be described with anisotropy factors, are compared
with manual calculations.

38
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3.5.1.1: Anisotropic Case: Directional Components Equivalent to Anisotropy Factors

To demonstrate that the directional semivariogram model technique produces the same results as
the conventional technique using anisotropy factors, a small synthetic data set with eleven data
points was created (Figure 3.3a). Given equivalent model input, the results are identical. The
semivariogram models for each case are:The principal axis is oriented to the Northwest. The map

M ethod Axis Model Type Ramge Sill  Nugget Y-Anisotropy
Anisotropic | All Spherical 100 0.14 0.02 04
Spherical 250 0.11 0.75
Directiona | X Spherical 100 014 0.02 NA
Spherical 250 0.11 NA
Y Spherical 40 014 0.02 NA
Spherical 187.5 0.11 NA

in Figure 3.3b is the traditional simple kriged map using a single semivariogram model with
anisotropy factors. Figure 3.3c was produced using directional semivariograms. When the two
maps are subtracted from one ancther, the difference is zero at every grid location, indicating that
the directional semivariogram method is able to correctly reproduce the simple case where
anisotropic conditions exist and the perpendicular semivariogram models are related by anisotropy
factors.

3.5.1.2: Anisotropic Case - Manual Solution

To demonstrate that the method produces the answers we intuitively expect, several g(h) values are
calculated manually for several points at various orientations with one model set (three orthogonal
directional semivariogram models). A second calculation will be made for the multi-nested model
defined in Figure 3.1. Thefirst model set is defined as:

Axis | Model Type Range Sill  Nugget

X Spherical 125 5 1
Y Gaussian 75 5 1
Z Spherical 30 5 1

for the points:

Sample X Y Z
| 87 0 0
I 43 26 0

11 43 26 -11
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FIGURE 3-3. Example results confirming directional semivariograms can exactly mimic
anisotropy factors: @) sample data set, b) SK map using anisotropic factors, ¢) SK map using
directional semivariograms.
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the solutions are cal cul ated:

). Forthepoint (87,0, 0), the solution issimple. The point lies along a principal axis,
and in this case has a zero Y and Z component. y(h) can therefore be calculated
directly, using the standard spherical equation for the X direction:

S
y(h) = > Ci ;where s= number of structures
i=0

(3.19)
d _h h30
V(h)l =Cd.5--0530
o fr r'o

(3.20)

0 87 g7® 0
h), = 5.5—— — 0.5—— = 4.377
v, % 125 12535

y(h), = nugget = 1.0

y(h) = y(h), +y(h), = 4377+1.0 =5.377

where h isthe separation distance, and r is the model range (for this equation only).

I1). For the point (43, 26, 0), thefirst step is to define the nugget; y(h), = 1.0. Next the X
andY directional components must be calculated (the Z axis has a zero component).
The X and Y intercepts of the ellipse that passes through (43, 26) and has an X/Y
aspect ratio of 125/75 (alb) (remember the actual Gaussain range must be multiplied
by the to determine the practical ellipsoid range). The intercepts, & and b’ are
determined using the standard equation for an ellipse (Equation 3.3):

a® = (43)% + @7%53@2(26)2

a=49.74

(using Equation 3.5a)

(using Equation 3.5b)
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b’ =50.97
Giventhe X andY intercepts, y(h) for each ellipsoid axisis calcul ated:

0 49.74 49,7430
h), = 501.5 -05—2 = 2.827
V(s % 125 125° B

RV ITRY
yy(h), = clg_e (h)=/(r) E
(3.21)

Yy(h)l _ 5%_ e—(50.97)2 1(75)? %: 1.849

Note that the actual and not practical range is used to calculate yy(h);. Once the

maximum contributions for each axis have been determined, the component
contribution of each must be determined. This is done by determining the effective
angle of the vector (43, 26) in the X-Y plane. The effective angleis:

Elz 125 O
_ 10 75y30_
Q= tan DTD— 30190

H H

Given this angle, the components of y,(h) and yy(h) can be determined. Intuitively
the X-axis component can be defined as:

2.827

(N (o]
0 -2019) _, g

and theY-axis component is:

[30.19°0

1.849 = 0.620
Hoo° H

Adding the two components together yields a directional y(h) of 2.499. Thisyields
the same result asif Equation 3.18 were used:
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%6 125 O
tan™t 7530
0 43 U

H H

Va(h)y = ————(1.849-2.827) + 2.827 = 2.449
2

When the y(h); components are summed, the total estimate for y(h) is 2.449 + 1.0
which equals 3.449.

[11). The same approach may be used for the last point (43, 26, -11), y(h), = 1.0, and the
X,Y, and Z directional components must be calculated. Thefirst step isto calculate
the X, Y, and Z intercepts for the ellipsoid that passes through (43, 26, -11) and has
an X/Y aspect ratio of 125/75, a X/Z aspect ratio of 125/30, and aY/Z aspect ratio of
75/30. Theintercepts, &, b’, and ¢’ are determined using the standard equation for
an ellipsoid (Equation 3.3):

a?= (437 + @7%53@2(26)2 + Eﬂ;;gz(—u)z

(using Equation 3.5a)

a =67.64
43)? , 753 )
p2= B e + -11
125 g (26) H3o H (19
%5\/3 . .
(using Equation 3.5b)
b’ =70.29
2 2
C’z = (43) + (26) + (—11)2
(125 o753t
O300 Hao H
(using Equation 3.5¢)
c' =16.23

Given the X, Y, and Z intercepts, y(h), for each ellipsoid axis is cal cul ated:

30
67.64 _567.621 0_ 2662
125 125°

O
Vx(h)l =505
O
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yy(h), =55~ e (029" 0= 5. 923

0 16.23 16.23°0
h), = 5[1.5 -05 =3.662
yz(h), g- 30 30° E

Using the same methods as described for point 11, v, (h), can be determined:

E[Z 125
6——
tan™ 7530

O 43 U

H

Va(h), = ———————(2.923-3.662) + 3662 = 3.414
2

Now that the X-Y axis contributions have been merged, the Z-axis component is
incorporated. This requires that d’ and r be calculated. d' is calculated by merging
equations 3.12 and 3.13:

(3.22)

tan~t 6—712%§
d'=——"23(70.20- 67.64) + 67.64 = 6853
2

r = /(43) +(26)? =50.25

Similar steps are used in the vertica R-Z plane through (43, 26, -11) as were
undertaken in the X-Y plane,. For purposes of calculating the vector length h, only
absolute values for each coordinate are used, and ¢’ and d’ are substituted for ¢ and
d. Theanglef fromRto Zis:
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Ell 168.53 0

= tan =
¢ U 5025 U

H™

Given this angle, the components of y,(h), and y,(h); can be determined.

(90° - 42.75°)
(0]

3414 =1.792

and the Z-axis component is:

42.75°

90°

3.662 =1.739

Adding the two components together yields a directional y(h), of 3.531. Thisyields
the same result asif Equation 3.23 were used:

Elll 68.53]
-10 16.230

@ 50.25 @
Ve(h); = —————(3662-3414) +3414 = 3531

2
When the y(h); components are summed, the total estimate for y(h) is 3.531 + 1.0
which equals 4.531.

For the final example, the one and two-nested structure models shown if Figure 3.1 are used. This
example demonstrates that the modeler is not required to specify the same number of model
structures in all directions. Although the algorithm requires the number of structures to be equal,
the algorithm can internally add extra structures as needed without affecting the model description.
The calculations will be made for two points separated by 200m at a 45° angle (x = 141.1, y =
141.1). The models are defined:

Direction Range C M odel Nest
North-South 450 0.05 Spherical 2
200 0.20 Spherical 1
0.022 Nugget 0
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Direction Range C M odel Nest
East-West 150 0.00 Gaussian 2
150 0.25 Gaussian 1
0.22 Nugget 0

Note that the number of structures are the samein both directions, but the East-West model s second
nest has a zero sill (C) component. As described in the earlier examples, the nugget is a constant
with direction, therefore y(h), = 0.022. The remaining y(h); values are calculated as follows

(geometric interpretations are shown in Figure 3.4):

/
a?=(141.4)% + 4 150v3 52(141.4)2
a,=2319
2
p2= L4 1414y
50 307
H 200 H
b, =1784

(h), = 0254 - &7(150:9) /221970 0 17g0

200 200% U
h), = 0.20@A.5-=—-05 0.1954
Vy(y g' 1784 17840

g 30
414150\/3

00 U
N VT
0 0

ya(h), = = = H(0.1954 - 0.1789) + 0.1789 = 0.1885

2

For the second nest, there is no East-West component. For the algorithm to work correctly, an
additional East-West structure must be defined (the number of structures for all axes must be
equal). To satisfy the algorithm and the specified Gaussian model, a zero sill component is used,
and therangeis set equal to the previous nest. This manipulation satisfies the algorithm, and leaves

the model definition unchanged:
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STEP 1: Determine Nugget y(h)g = 0.022
STEP 2: Determine C; Geometry (Nest 1)

(0, 200)
(0,178.4)
vy (n) = 01954

«(h) = 01885
§ v(h), = 0.1885

45°-»52.4°

(231.9,0) (260,0)
STEP 3: Determine C, Geometry (Nest 2)

Y

A

b
(0, 450)

vy () = 0019

(0, 283.4) )—E -
AN v(h), = 0.006337
\

\
ve (n) = 0006337 \
(1414, 1414)

S \
AN
| va(h) =00

| a 2 o
(1628,0) (2600)

STEP 4: Sum Components y(h) =0.2168

45°-» 30°

FIGURE 3-4. Geometric steps for calculating directional semivariogram model defined in Figure
3.1. Themagjor axisis aligned North-South, and the minor axisis aligned East-West. Note, the 45°
angleistransformed (-») based on the anisotropy of the ellipsoid.
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2= (141.4)2 El%g 141.4)?
a,=162.8

(141.4)

(150,307
H 450 H

b= +(141.4)
b, = 2834

-0 Oogl ~(150+3)? /(162.8)2 B: 0.0000

450 450° O
h), = 0.05.5 -05 _001900
Vy(h); % 2834 28347

0 0

Dl A 4150%3 -
450

I 1414 U

0 0

ya(h), = J = ~(0.1900 - 0.0000) + 0.0000 = 0.006337

2
Thefina step isto sum the y, (h); components:

Z Ya ()i = va(h)o +Va(h), +va(h),

= 0.022 +0.1885 + 0.006337
=0.2168

3.5.2: Practical Applications

A synthetic and a field data set are used to demonstrate the effectiveness and usefulness of the
technique. For the synthetic case, the same data set that was used in section 3.4.1.1 is utilized,
though different assumptions about the X andY semivariogram models are made. Thefield data set
isresidual bedrock elevation data from the Rocky Mountain Arsenal, Commerce City, Colorado.
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3.5.2.1: Synthetic Directional Semivariogram Demonstration Set

To demonstrate that directional semivariogram models can have a significant impact on model
results, the data set in Figure 3.3a is used, but in this case anisotropy factors are not used, rather
directional semivariogram models are defined. Since this is a synthetic data set, none of the
following models can be argued to be the best representation of site conditions, any more than the
other models, but the exercise demonstrates that directional semivariograms offer great flexibility in
adjusting the estimations to match perceived or measured site conditions. Three different site
scenarios were cal culated based on the following directional semivariogram models (Figure 3.5):

Scenarios | Axis Nest Model Type Range Sill  Nugget
| X 1 Spherical 100 0.14 0.02
2 Spherical 250 0.11
Y 1 Gaussian 231 014 0.02
2 Exponential 62.5 0.11
I X 1 Spherical 100 0.14 0.02
2 Spherical 250 0.11
Y 1 Gaussian 231 007 0.02
2 Exponential 62.5 0.18
11 X 1 Spherical 100 0.14 0.02
2 Spherical 250 0.11
Y 1 Gaussian 625 025 0.02

The ranges of the exponential and Gaussian models are significantly different from the spherical
model ranges used for the Y-axis (40m and 187.5m for two nests) in Section 3.4.1.1. Therange of a
exponential and Gaussian model must be multiplied by the following factors to yield the equivalent
spherical range (Deutsch and Journel, 1992):

Model Tyoe | Practical Range (a)
Exponential 3a
Gaussian a(sort(3))

Despite these rules of thumb, the range for the scenario |11 Gaussian model was set to 1/3 of the
two-nested Spherical model’s range. This configuration more closely resembles the original and
aternate Y-axis models (Figure 3.5, the climbing limbs of the models are more similar, even if the
full Gaussian range is somewhat reduced). These models, are oriented with their mgjor axes to the
Northeast. In Figure 3.6a, the structures for the minor axis were substituted with Gaussian and
Exponential models. In Figure 3.6b, the sill terms for the first structure in the minor axis (Y) was
lowered to 0.7, and the sill for the second structure was raised to 0.18. Finally, in Figure 3.6c, the
minor axis was substituted with a single Gaussian model (sill = 0.25, a second structure with a 0.0
sill component is assumed by the algorithm). The estimations (Figure 3.3a,b, and Figure 3.6a-C)
show the same general NE-SW trend, but vary in detail. The differences are easiest to see near the
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Semivariogram Models

Semivariogram Ellipse Minor-Axis. Various Test Cases

(OO o o o o oy o o S s e oy sy s e, sy ey e ey ey
030 F —
S
= I
g 020
E L o
cU 0
(=) D _ )
S o - Variance J
i ’:' *  Experimental Model i
010 LE ~~  Spherical-Spherical i
L .»*"  Gaussian-Exponential ]
! .+=*”  Gaussian-Exponential (different Cx) | |
’ .»*"  Gaussian (a/3) ]
s Gaussian (asqrt(3)) |
000 " " " " Il " " " " Il " " " " Il " " " " Il " " " "
0 100 200 300 400 500

Distance (meters)

FIGURE 3-5. Semivariogram models used for synthetic directional semivariogram data set. Despite
the general rule of thumb that the practical Gaussian range to a spherical range (@) is the SQRT(3)
multiplied by the range (a), the Gaussian (range (3) x SQRT(3)) model, because it mimicked the
general nature of the other models more closely.

peaks at (100,300: in red), the valley depressions near (425, 210: in blue), and the slope transition at
(70, 130). Although Figure 3.3b, and Figures 3.6a through 3.6¢ appear similar to each other, the
mean absolute differences are as much as 7%, and differences between individual cells are up to
37% (Figures 3.7a, 3.7c, and 3.8), when compared to the kriged mapped using anisotropy factors
(Figure 3.3b). These scenarios demonstrate how the use of directional semivariogram model
descriptions impacts the resulting maps, relative to a scenario which utilizes a compromise
semivariogram model with anisotropy factors.

3.5.2.2: Rocky Mountain Arsenal Demonstration Data Set

To demonstrate the effectiveness, and some of the difficulties, of directional kriging, a data set of
bedrock surface elevations (actually residuals from a second-order trend-surface) from the Rocky
Mountain Arsenal (RMA), Commerce City, Colorado is used. With this data set, use of correct
directional semivariogram models reduced the average estimation variance over the map area, even
though an artificialy large nugget was used. Because of problems with the Gaussian
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a). Spherical-Spherical and Gaussian-Exponential

Contour Legend
Interval = 0.05

D
[=
z
o)
P4
b). Spherical-Spherical and Gaussian-Exponential
With Variable Sill Component
(o))
[=
£
S
z
Contour Legend
S
(/117
(=]
c
z
o)
p4

200 300
Easting

FIGURE 3-6. Results of directional semivariogram models using different assumptions about
major and minor semivariogram models.
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a). Aniso. minus Sph.-Sph. and Gau.-Exp.

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00
-0.01
-0.02
-0.02
-0.04
-0.08
-0.06
-0.07

Northing

b). Aniso. minus Sph.-Sph. and Gau.-Exp.
With Variable Sill Components

0.08
Contour Legend 0.07
Interval =001 006
0.05
0.04
0.03
0.02
0.01
0.00
-0.01
-0.02
-0.02
-0.04
-0.08
-0.06
-0.07

Northing

). Aniso. minus Sph.-Sph. and Gau.

Contour Legend 0.30
% Interval = 0.05 0.25

L)
% 015

Northing

0 100 200 300 400
Easting

FIGURE 3-7. Differences between original SK models (Figure 3.3a-b), and directional
semivariogram models (Figures 3.6a-C).
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Anisotropic Factor - Directional M odels

a). Spherical-Spherical and | | { [ | | ]

20F  Gaussian-Exponential ! "“xi ! Mean = -0413 ]

i 1 i Mean Difference| = 1.55 ]

10f Ah% Masimum = 830 :

] o s e e o o o YT B

S b). Spherical-Spherical and [ ! ]

‘5’ 20F  Gaussian-Exponential i E"\ : Mean = 0.304 ]
= With Variable Sills P : Mean [Differencel = 152

S 10F | ) ,\V\;Im!mumi—ss.s(f ]

g i i aximum = 8.

T . q ]

(] e e o e g R S = oo

c). Spherical-Spherical and ]

20fF Gaussian Mean = 0.821 ]
Mean |Dif_fe_ ence| i 7.39

0} Masimum = 306 :

ob IITTTTTre i ]

25 20 -15 -10 -5 0 5 10 15 20 25 30 35
Per centage Difference

FIGURE 3-8. Distribution of differences between origina SK models (Figure 3.3a-b), and
directional semivariogram models (Figures 3.6a-C).

semivariogram model, the nugget term was increased by 260% to stabilize the kriging matrix
(Gaussian models can cause singular matrix problems with small nuggets (Ababou, et al., 1994;
Posa, 1989)).

3.5.2.2.1: Backaround

Johnson (1995) had trouble evaluating this site due to constraint related to the semivariogram
model definition. She recognized directional differencesin spatial statistics, but anisotropy factors
would not allow her to model them correctly. Asaresult, Johnson compromised with a two-nested
spherical model. It is important that the RMA be modeled accurately, because, summarizing
Johnson (1995), there are many serious environmental concerns:

The RMA was established in 1942 for the production of chemical and incendiary
munitions. From 1947 to 1982, herbicides and pesticides were aso produced
(Environmental Science and Engineering, 1987). During this time chemical agents, such
as levinstein mustard (H), phosgene, napalm, isopropylmethyl fluorophosphonate (Sarin
or GB), and dichlorodiphenyltrichloroethane (DDT) were produced (Harding Lawson
Associates, 1992). Problems arose at the site because liquid wastes were disposed of in
lined and unlined evaporation basins, and waste was initially held in settling ponds or
transported by sewer or drainage ditch to the basin (Kuznear and Trautmann, 1980). By
the 1950's the effects of ground water contamination were noted; there was high
waterfowl mortality and extreme crop loss (Harding, Lawson, et al., 1992). By 1974,
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disopropylmethyl phosphonate (DIMP) and dicyclopentadiene (DCPD) contamination was
detected off site (Environmental Science and Engineering, 1987).

Johnson (1995) investigated potential transport routes for contaminants from the RMA. To
accomplish this, Johnson (1995) identified and simulated (using conditional indicator simulation)
paleo-river channels, coarse and fine sediment distribution, and the ground water surface. The
paleo-river channels are of interest because they provide potential pathways for ground water and
contaminant movement. To identify these paleo-river channels Johnson (1995) simulated the
bedrock surface using boring data from 842 wells. This bedrock surface was identified as an
ancient erosional surface which dips slightly to the Northwest towards the Platte River (Harding, et
al., 1992).

In Johnson's (1995) work, the regional dip was removed from the bedrock data using a second-
order trend-surface. Using the residual data, Johnson performed semivariogram analyses and
conditional simulation. A problem arose during the semivariogram analysis, the experimental
semivariograms in the minor and major search directions couldn’t be modeled well using a single
model semivariogram with anisotropy factors. As a result, compromises were made in selecting
semivariogram models (Figure 3.9a) with the hope that, by honoring the short lag data, errors
would be acceptably small.

3.5.2.2.2: Directional Semivariogram Kriging

The directional semivariogram kriging technique was to used separate the directional components
in semivariogram models. The full series of simulations presented by Johnson (1995) is not
repeated here, but the new estimates of the bedrock surface honor the spatial distribution of the data
better than the estimates made by Johnson (1995). This is accomplished by using simple kriging
and evaluating the estimation variance. The estimation variance is a function of the data locations,
and the differences between ordinary kriging and indicator kriging, do not effect the estimation
variance. It is important to note that the estimation variance only provides a comparison of
alternative data configurations; it is independent of the data values (Deutsch and Journel, 1992).

Four semivariogram models were evaluated: (I) one is similar to Johnson’'s (1995) two-nested
spherical-spherical model with anisotropy factors, but an improved model with a lower mean
square error (MSE) is used (Figure 3.9a); (1) another is an accurate directiona spherical-spherical
/ Gaussian model (Figure 3.9b); (111) asecond directional model based on I1, but with amuch larger
nugget to accommodate difficulties with the Gaussian model is used (Figure 3.9c), and finally (1V)
another two-nested spherical-spherical model with anisotropy factors, but an appropriate nugget is
used (Figure 3.9d). The semivariogram models are summarized in Table 3.1.

Model | fits the major-axis (East-West) well, but its spherical-spherical structure is not able to
represent the inflection in the early portion of the minor axis (North-South) experimental
semivariogram. This model assumes a zero nugget. When this model is used with Simple Kriging
on the site data (Figure 3.10a), using a 50 by 50, two-dimensional grid, the smallest estimation
variance results of all the semivariogram models are obtained. The kriged surface and estimation
variance are shown in Figures 3.10b-c. It is thought that this model underrates the estimation
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FIGURE 3-9. Experimental and model semivariograms for RMA bedrock residuas (2nd order
trend removed): a) anisotropy factor model optimized to minimize M SE based on Johnson (1995),
b) optimized minor-axis fit with Gaussian model (note MSE reduced by 82%), c) minor-axis
Gaussian model fit with elevated nugget to reduce kriging matrix instability, d) anisotropy factor
model optimized to minimize MSE, but also honor nugget defined in b).

variance due to the zero nugget. It is clear that the nugget has a y(h) value of approximately 16
(Figure 3.10b). Thisincorrect assumption is corrected with model 1V.

Model |1 (Figure 3.9) has the best fit of the four models evaluated, based on M SE measurements of
the experimental semivariograms. Thefit is particularly good for the minor axis. The MSE for this
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Model | Axis Model Tyoe Range Sl Nugget Y-Aniso MSE
| XIY Spherical 4400 234 0 1.833 943/767
Spherical 11000 246 0.780
Il X Spherical 4400 201 16 NA 911
Spherical 11000 262 NA
Y Gaussian 2806 466 16 NA 136
1" X Spherical 5330 224 39 NA 1270
Spherical 12480 217 NA
Y Gaussian 2874 441 NA 509
I\ XY Spherical 4400 226 39 1.833 987/1060
Spherical 11000 238 16 0.780

TABLE 3.1. Alternative semivariogram models for RMA residual bedrock surface. Range,
sill, and nugget terms are in feet.

axis model is only 12% to 25% of al the other models evaluated. From this model, it was
concluded that the nugget has a y(h) value of 16.0. Due to theoretical problems with Gaussian
models and the small nugget (less than 10% of the variance) associated with these data, this model
has no acceptable solution. Many individual grid cell kriging matrices are singular, or have huge
kriging weights (weights greater than +1.05 were considered unacceptable; weights greater than
+200 were found). Regrettably, this behavior is inherent with the Gaussian model, but increasing
the nugget increases the stability of every matrix solution (Ababou, et a., 1994; Posa, 1989).

Model 111 (Figure 3.9¢c) was developed in an attempt to stabilize the solution, without completely
compromising the model results, the nugget was increased until there are no singular matrices or
individual kriging weights greater than 1.05 (this allows for some negative kriging weights). To
attain this, the nugget was increased to 39.0 (a 244% increase); thisis still only 8% of the data set
variance. The kriged bedrock surface and estimation variance are shown in Figure 3.11a-b. The
average estimation variance is significantly larger for this model than for model |I. The difference
between the estimation variances (Modél |11 - Model 1) are shown in Figures 3.11c and 3.12a. The
estimation variance for model 111, on average, is 12.7% larger than the estimation variance for
model I, but this is not a reasonable reflection of model quality, because the results of model | do
not account for the variance due to the nugget.

Model IV (Figure 3.9¢) is a modification of model | and accounts for the nugget (although not
exaggerated as is necessary for the Gaussian model (111)). The kriged surface and estimation
variances are shown in Figure 3.13a-b. The difference between the estimation variances (Model 111
- Model V) are shown in Figures 3.13c and 3.12b. Now that the nugget isincluded, it is reasonable
to compare the results of using the traditional anisotropy factor model, to those obtained by using
the directional semivariogram model approach. Even though model 111 has increased the nugget by
244% to stabilize the Gaussian model, the mean difference in the estimation variance between
models |l and IV is-5.20%. Thisimplies model 111's (the directional models) results are better, or
at least less uncertain, than the results from model 1V. A Q-Q (quantile-quantile) plot is aso shown
in Figure 3.14 comparing the original (1) estimated residuals vs. each of the other models. It shows
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a). Well Locations

Northing (feet)

b). Original (I) Scenario Kriged
Surface

Northing (feet)

Contour Legend
Interval =5

). Original (1) Scenario Estimation
Variance

Northing (feet)

70000 75000 80000 85000 90000 95000
Easting (feet)

FIGURE 3-10. Location of sample wells at RMA (@), SK map of bedrock elevation residuals (b),
and estimation variance using an anisotropy factor, spherical-spherical semivariogram model | (c)
(Johnson, 1995).

that the results are similar in all models. Each model generates a similar number of sample values
in each of 100 quantiles, but by fine tuning the semivariogram models the estimation variance can
be reduced without making any dramatic changes in the overall model statistics.
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a). Robust Gaussian (111) Kriged
Surface

Northing (feet)
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b). Robust Gaussian (I11) Estimation
Variance

Northing (feet)

Contour Legend
Interval = 25
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¢). Robust Gaussian - Original (1)
Estimation Variance

Northing (feet)

Contour Legend
Interval = 10

70000 75000 80000 85000 90000 95000
Easting (feet)

FIGURE 3-11. RMA SK map of bedrock elevation residuals (a), and estimation variance using
robust Gaussian factor semivariogram models (b), and difference between robust Gaussian (b) and
origina (Figure 3.10c) estimation variance maps (C).

In this example, if the nugget is accounted for, the directional semivariograms yield a better result,
even when the nugget was artificially exaggerated only for the directional model to prevent
problems associated with use of the Gaussian model. 1n some cases though, unstable models (such
as Gaussian) may make the use of directional models undesirable, even when they would, at first,
appear justified. AsPosa(1989) argues, and his conclusion is supported here, it is sometimes better
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a). Gaussian (I11) - Original (1) Estimation Variance

Mean = 12.7
Median = 10.4
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b). Gaussian (I11) - Original Plus Nugget (1V) Estimation Variance

Mean = -5.20
Median = -7.87
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FIGURE 3-12. Distribution of differences between alternative estimation variance maps: (a) the
difference between the robust Gaussian (I11) and the anisotropy factor, spherical-spherical
semivariogram model (I); (b) the difference between the robust Gaussian (I11) and the anisotropy
factor, spherical-spherical semivariogram model with nugget (1). The positive, average difference
in (a) indicates the Gaussian model has a higher average estimation variance. The negative, average
difference in (b) indicates the Gaussian model has alower average estimation variance.

to use a semivariogram model which is not as physically correct, but which is numerically more
robust (i.e. a spherical model).

The main problem with implementing directional semivariograms, in this case, was related to the
instability in the kriging matrix resulting from theoretical problems associated with using a small
nugget and a Gaussian semivariogram model. This, however is a general problem for al kriging
methods, and should not reflect adversely on the directional semivariogram method.
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a). Original Plus Nugget (1V) Kriged
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FIGURE 3-13. RMA SK map of bedrock elevation residuals (a), and estimation variance using the
anisotropic factor spherical-spherical semivariogram model with a valid nugget (IV) (b), and
difference between the robust Gaussian (111) (Figure 3.10c) and estimation variance maps (b).
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Change In Estimaed Residuals by M odel

Q-Q Plot
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FIGURE 3-14. Q-Q plot of bedrock elevation residuals where the original Spherical model using
anisotropy factors () is compared versus 1) the origina Gaussian model (I1), 2) the robust
Gaussian model, and 3) the original Spherical model adjusted with anugget. The plot suggests that
the general nature of al the models are similar.

3.6: Conclusions

This chapter demonstrates that better definition of the experimental semivariogram, yields results
which better honor the spatial statistics of the sample data. Thisisillustrated by reduced estimation
variance when factors other than model definition are removed. Thisis accomplished by defining
unique model semivariograms along each of the three principle axes of the semivariogram model
ellipsoid. In addition to improving the results, the procedure also makes it easier to model
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experimental semivariograms, because one need not compromise when selecting model types and
sills for each axis. There is an increase in computational effort which increases total processing
time in this study (observed times increased 80% to 200%), but this cost is relatively minor when
compared to the total time the modeler spends developing semivariogram models. Overall, use of
directional semivariogram modeling requires some additional computational time, but modeler
effort is reduced, and most important, a significant increase in accuracy may be attained.
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