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CHAPTER 3 VARIATION OF 
SEMIVRIOGRAM  MODELS 
WITH DIRECTION

When developing semivariogram models, it is often difficult to fit a model semivariogram to both
the principle-axis and the minor-axes using traditional methods with anisotropy ratios.  Currently a
single model (possibly nested) is modified with anisotropy factors; these represent the relative
range of the semivariogram for all three orthogonal axes.  This technique is restrictive, and this
discussion presents a method for relieving these restrictions by defining different semivariogram
models, independently for each axis.  These will be referred to as directional semivariograms.  The
process increases the kriging processing time by 80% to 200%, but the method offers the modeler
greater flexibility, and simulations or estimations that are more representative of the site, because
the spatial variation of the data can be more precisely defined.

3.1:  Introduction

Semivariogram modeling is the foundation for much geostatistical analysis, and can
also be the most difficult and time consuming portion of the analysis.  In part, this is due to the
computationally intensive calculations, but it is also due to the difficulty in defining semivariogram
models which reasonably honor the experimental semivariograms in the principle and minor search
directions.  With the current techniques that use anisotropy factors (Englund and Sparks, 1988;
Journel and Huijbregts, 1978; Deutsch and Journel, 1992), often it is not possible to model all the
orthogonal experimental semivariograms exactly.  Consequently compromises are required for the
definition of one, or even all of the models.  If the compromises are not too substantial, then this
approach is acceptable, because, generally the kriged results are relatively insensitive to minor
changes in the semivariogram.  Though this insensitivity offers some comfort, it is not particularly
satisfying.  

This chapter describes a procedure, which allows the modeler to define a unique
semivariogram model for each orthogonal axis of the experimental semivariogram.  The algorithm
uses components of each model to determine γ(h) values between the axes.  Anisotropy factors are
not used; rather the modeler specifies the number of nests, sill and range components, and model
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structure types independently for each axis.  The only requirements are 1) the nugget must be the
same for all models, and 2) the total sill must be the same at infinity.  These two requirements are
not particularly restrictive.  Requiring the nugget to be the same is reasonable, because at zero
distance, direction is irrelevant.  The requirement that the total sill components are equal ensures
that the kriging matrix is non-singular.  If different sills are desired, then this requirement is met by
defining an arbitrarily large range for the final nest to make up the balance of the sill component.
The error induced by the final nest has no affect on the area of interest.

This technique allows the modeler to honor the results of the experimental semivariogram analysis,
thus it is easier to model the data set and the results are more accurate.  However, the calculation of
γ(h) is substantially more complex than traditional methods, therefore the method requires
computational effort.  The additional effort is comparable to the computational effort required for
the search procedure and matrix solution portions of the kriging algorithm so, overall, the task is
only increased by about 80% to 200% (based on observed differences in computation time for
example data sets).  This is acceptable, because the semivariogram model preparation is simplified,
and the simulations or estimates should more closely honor the spatial statistics of the site.

3.2:  Previous Work

Many techniques have been developed to estimate values of a variable at locations between sample
points.  These techniques are all based on the assumption that properties at unsampled locations are
related to the properties at nearby points where samples have been taken.  Some techniques are
inaccurate due to assumptions related to the spatial variation and the relative importance of nearby
data.  For example, the inverse-distance method states that surrounding data (n = number of
samples) have less importance with increased distance:

 (3.1)

The rate (p) at which increasing distance (d) reduces the influence of a neighboring sample value
(xi) is subject to debate.  Various factors for p have been suggested; 1 (linear), 2, 1/x,  based on the
modelers previous experience with the technique, and its performance at similar sites.
Consequently the results are subjective.

Kriging eliminates much of this subjectivity by utilizing the semivariogram as the spatial weighting
function.  The variance of the data and the rate of change in variance with direction and distance
can be defined with the equation:
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3.3: Theory

 (3.2)

where γ(h) describes spatial variance of all data pairs separated by a distance h.  N is the number of
pairs separated by the distance h, and xi and xi+h are the values at two points in the pair.
Experimental semivariograms are complex, and for practical reasons are represented with one or
more functions selected from a limited number of model types (e.g. spherical, exponential,
Gaussian).  These models are used because they guarantee the matrices in the kriging solution will
be positive definite (i.e., the matrix is not singular).  Even with these constraints, the semivariogram
is a powerful mathematical tool for describing how a variable varies in space at a particular site.

Although semivariograms could be defined for an infinite number of directions, for practical
reasons, variation is only defined along the principle orthogonal axes (X, Y, Z), creating an
ellipsoid.  As defined here, the X-axis is equivalent to the direction with the longest range (the
principle axis), and the Y and Z-axes (orthogonal to X), have shorter, though not necessarily equal
ranges.  Although modeling and solving a more complicated system is theoretically possible, it
would be extremely expensive computationally.  To further simplify the solution, the
semivariogram models for the Y and Z-axes have traditionally been described using anisotropy
factors related to the X-axis.  This simplification is used extensively in current kriging models
(Deutsch and Journel, 1992; Gómez-Hernández and Srivastava, 1990), because it is
computationally efficient, however it compromises accuracy and requires more time of the modeler
when the same semivariogram model does not fit the experimental semivariogram in all directions.
The technique presented here allows the modeler to specify unique semivariogram models for each
axis.

3.3:  Theory

Two steps of the kriging process are modified to incorporate directional semivariograms into the
kriging algorithm: 1) the search for nearest neighbors, and 2) the calculation of the covariance
components of the kriging matrix.

The first step in estimating the value for a grid location is to find the influential neighboring points.
For isotropic situations the closest sample points are the best estimators.  For anisotropic situations,
the best estimators are those points with the smallest spatial variance calculated from the model
semivariogram (γ(h)).  Using anisotropy factors, the sample point locations are transformed to
equivalent isotropic space, using a simple transformation and rotation, based on the orientation of
the principle model axis, and the anisotropy factors of the minor-axes.  Once transformed, the
estimation variance is solely a function of the distance between the grid location and the sample
point, therefore γ(h) doesn’t have to be calculated.  Conventional techniques (Deutsch and Journel,
1992; Gómez-Hernández and Srivastava, 1990), use Pythagoras’ Theorem to find the closest points.
When directional semivariogram models are used, direction as well as distance is important. When
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different model equations, sills, and structures are used for the orthogonal axes, a simple
transformation and rotation is not possible, because the magnitude of γ(h) is not solely related to
distance (Figure 3.1).  For this reason, γ(h) must be calculated for each sample in the search

neighborhood, and those points with the smallest γ(h) values are the best estimators.

Once the most influential neighboring data points have been selected, the kriging matrix is solved
as usual, with the exception of the γ(h) calculation.  Again, for directional semivariograms, it is not
possible to transform points into isotropic space, therefore component of the individual axes must
be resolved.  Whether γ(h) is being calculated to determine the most influential neighbors or

FIGURE 3-1. When directional semivariograms are used, distance alone does not determine the
most influential neighboring points.  In this example, all points in the minor model axis direction
(b) that are separated by less than x2 (158 m) have smaller γ(h)’s than points separated by x1 (109
m) on the major-axis (a).  The same is true for x3 and x2 respectively.
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individual components of the kriging matrix, the same technique is used as described in the
following section.

3.3.1  Equation and Proof

Calculating γ(h) to determine the nearest neighbors for a grid location, or to define individual
components of the kriging matrix, requires the equation for an ellipsoid:

 (3.3)

Using this equation, it is possible to separate the components of each semivariogram model for any
vector (Figure 3.2). One point is translated to the axis origin, and the second point is positioned at
|x|, |y|, and |z|, along the separation vector (h).  Here a, b, and c, represent the maximum practical
ranges of the semivariograms model along the X-, Y-, and Z-axes respectively.  In this section only,
when the actual ranges are used the aactual, bactual, and cactual, subscripts will be used.  The practical
range refers to the distance where the semivariogram model meets the variance.  For the
Exponential and Gaussian models, this is defined as 95% of the variance.  The practical ranges for
different models are defined (Journel and Huijbregts, 1978): 

If the unadjusted range and not the practical range is used, the axis defined with the model using the
longest practical range will be under-weighted.  The equations for determining each component
γ(h)X,Y,Z and the resultant γ(h) are derived below. The components of each axis for each structure of
the nested semivariogram model can be related through the aspect factors:

f = a/b (3.4a)

g = a/c (3.4b)

p = b/c (3.4c)

Rearranging Equation 3.3, the ellipsoid factors a2, b2, and c2 for the search vector are solved:
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(3.5a)

  (3.5b)

FIGURE 3-2. Directional semivariogram analysis components.
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  (3.5c)

Where a’, b’, and c’ represent the X, Y, and Z-axis intercepts for an ellipsoid passing through an
arbitrary point, (x, y, z) along the same vector, where the aspect rations defined by a, b, and c
remain true, the following relationships are also true:

 (3.5d)

 (3.5e)

 (3.5f)

An additional axis, R, is also required.  R is defined by the intersection of the X-Y plane, and the
vertical plane passing through the point (x, y, z).  To determine the semivariogram components, the
point r, which lies on the R-axis, vertically below the point (x, y, z) is defined:

 (3.5g)

Two additional points of interest are where the semivariogram model ellipsoid and the ellipsoid
passing through (x, y, z) cross the R-axis; these are d and d’ respectively. Defining these two
ellipsoids, with the aspect ratios described above, the components of each semivariogram model
can be derived.  One new aspect ratio is needed between the R- and Z-axes.

q = d/c (3.6)

The distances a, b, c, and d represent the practical model range and a’, b’, c’, and d’ represent the
practical component range along each axis for the point (x, y, z).  The parameter d represents the
semivariogram model along the R-axis and is a combination of models a and b.  Once a, b, x, and y
are known, then d can be determined.  For a circle, the angle f is described as: 

  (3.7)
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Usually, the model semivariogram ellipse (X-Y plane) will not be a circle, therefore the anisotropy
must be removed to determine the component angle f.  This is the product of y and the aspect ratio
of the ellipse (f in the X-Y plane, major/minor dimension):

 (3.8)

The components of a and b can then be described by dividing (90° - f) by 90°, and multiplying by b
and a, plus a:

(3.9)

 (3.10)

The components can then be summed to calculate d’:

 (3.11)

By expanding f and solving, using radians, the equation may be rewritten:

 (3.12)

d’ can be determined by proportion:

 (3.13)

Given distances a’, b’, c’, and d’, it is possible to solve directly for γ(a’), γ(b’), and γ(c’).  To solve
for g(d’actual), the argument is used for d is repeated,  The components of γ(a’actual) and γ(b’actual) can
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then be described by dividing (90° - f) by 90°, and multiplying by γ(b’actual) and γ(a’actual), plus
γ(a’actual):

 (3.14)

 (3.15)

The components can then be summed to calculate γ(d’actual):

 (3.16)

By expanding f and solving, the equation may be rewritten:

 (3.17)

To solve for γ(e’actual), where e’ is the distance from the origin to the point (x, y, z), steps similar to
those used to generate d and γ(d’actual) are required.  Allowing γ(d’actual) to be equivalent to
γ(a’actual), and γ(c’actual) equivalent to γ(b’actual), this yields:

  (3.18)

These calculation must be evaluated for each nest of the model structure except the nugget (γ(h)0).
The nugget, having zero distance, by definition is the same for all axes.  This also implies that the
number of structures in every direction must be equal.  This restriction can be negated by giving
undesired nests a zero variance component and the same range as the previous structure.  The final
γ(e’actual) estimate is the summation on the nugget and the nested structure components:
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 (3.19)

3.3.2: Positive Definite Matrix Issues

The models selected for the semivariogram, must yield a positive definite kriging
matrix (Journel and Huijbregts, 1978).  If the matrix is not positive definite, there may be no
solution or there may be several different solutions (Isaaks and Srivastava, 1989),  and the kriging
variance may be negative (Journel and Huijbregts, 1978).  The various model types used here
(spherical, exponential, Gaussian, and logarithmic) have proven to be positive definite both
individually and in combination as nested structures (Journel and Huijbregts, 1978).  Although the
equations are merged in a different manner for directional semivariograms than for traditional
kriging, it is assumed that the matrix remains positive definite.  In practice, several indicators used
to determine whether the matrix is not positive definite, are 1) matrices that are singular, 2) have
large positive or negative kriging weights (much larger or smaller then ± 1.0), and 3) the occurrence
of negative estimation variances.  Proving that the equations are positive definite is a difficult task
(Christakos, 1984; Isaaks and Srivastava, 1989), but in summary, for a symmetric (n x n) matrix to
be positive definite, it must satisfy any one of the following conditions (Burden and Faires, 1985;
Isaaks and Srivastava, 1989; Strang, 1988):

i) xtAx > 0 for all non-zero vectors x.

ii) All the eigenvalues (λi) of A are greater than 0.

iii) All the upper left submatrices Ak have positive determinants.

iv) All the pivots (di, without row exchange) are greater than 0.

for every n-dimensional column vector x ≠ 0, where A is the kriging matrix, Ak is a submatrix of A,

x is any vector (appropriately dimensioned), and xt is the transpose of x.

3.3.2.1: Problems With the Positive Definite Assumption

Some problems with large positive and negative weights and negative kriging
variances were encountered when Gaussian models were used with the directional kriging method.
Many of the problematic matrices were confirmed to be positive definite based on tests i) and ii).
The problems were attributed to the unstable nature of the Gaussian model with small nuggets
(Ababou, Bagtzoglou, et al., 1994; Posa, 1989).  Ababou, et al (1994), state that this is a common
problem, particularly with Gaussian models that have small nugget values.  The kriging matrix
becomes more unstable and approaches singularity at small h values.  This tendency can be
estimated using the kriging matrix (A) conditioning number κ(A):
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3.4: Modification of Algorithms

The Gaussian model, is one of the most problematic (2 to 14 times worse than hole-exponential
models (which are one of the best) (Ababou, et al., 1994)) and most unstable, and tends to have
minimum eigenvalues near 0.0.  Also, because the model is relatively flat at small h values (unlike
all other models), the problem prevails at larger h values than for other models (Posa, 1989).
Because of this instability, it is sometimes better to select a model which does not physically fit the
data as well as another model, but is more robust (Posa, 1989).

3.4: Modification of Algorithms

In this project, the GSLIB ktb3dm (Deutsch and Journel, 1992), and SISIM3D (Gómez-Hernández
and Srivastava, 1990; McKenna, 1994) algorithms were modified to build the kriging matrix using
both anisotropic semivariogram models and directional semivariogram models.

3.4.1:  Algorithm Constraints

Although directional semivariogram models relax many of the constraints in defining spatial
variation, there are several limitations.  Some of these limitations arise from  the theory, and some
from the implementation.  The limitations are:

• The number of semivariogram models for each axis must be equal.  This is a minor
limitation, because extra models can be added as needed with a zero variance
component, and a range equal to the final desired range.  If this is not done, there may be
ambiguity in how the semivariogram models are evaluated.

• The sill for all axes must be equal.  Again this is a minor limitation.  If the variance in
one direction is smaller than another in the grid area, the remaining variance component
may be added to the final nest, while the range for the final nest is set to a range much
greater than the size of the simulated area (or the search distance for that matter).  This
constraint is required to ensure positive definite matrix solutions.

• Gaussian models may be used with small or zero nugget values, but the modeler must be
aware that the results can be unstable.  The algorithm presented here tests for large (±)
weights and warns the modeler.  The algorithm can remove data points (the point
associated with the largest absolute kriging weight) from the kriging matrix until the
results stabilize, or until there are too few points to estimate the grid location, however
estimates resulting from such elimination should be considered highly suspect (See
Rocky Mountain Arsenal example described below), and one may wish to compromise
and use a larger nugget (often the problem with Gaussian models), or a different model
type all together.



VARIATION OF SEMIVRIOGRAM MODELS WITH DIRECTION Wingle

38 T-4595:  Colorado School of Mines

3.4.2:  Computational Cost

Although use of directional semivariograms is computationally intensive, the increased
computation, is significant, but not excessive.  In several test cases, the computation time increased
between 80% and 200%.  The increased computation occurs mainly in the search algorithm that
identifies the most influential neighbors for each grid location and in the additional overhead for
calculating each covariance value of the kriging matrix.

The search algorithm in the traditional technique includes two main steps: 1) transformation of the
sample data to isotropic space, and 2) calculation of the distance between each point and each grid
location being estimated.  In addition to these steps, the directional semivariogram technique
requires that γ(h) be calculated for each sample point, relative to the position of the grid position
being estimated.  To determine the neighboring points with the smallest spatial variances,
traditional techniques calculate only the relative distance between sample points in isotropic space,
and the point being estimated.  This is adequate, because the spatial variance is only a function of
distance.  When using directional semivariogram models, transformed isotropic distances are not
sufficient to rank sample points; direction is also important, thus γ(h) for the separation between
each sample and the grid location must be ranked.  Calculating γ(h) in the search phase, adds most
of the increased computational effort.

The calculation of γ(h) for the kriging matrix also requires additional effort.  Although this step is
generally less expensive in computation time than the search step because it is applied only to the
selected nearest neighbor points and not to all points within the search neighborhood.

To solve the kriging problem, the kriging matrix must also be solved using either Gauss elimination
or a more efficient LU decomposition (Alabert, 1987).  These calculations are unaffected by the
method used to define the semivariogram models, but because this is a computationally intensive
task, the increased cost due to directional semivariogram modeling is less severe.

3.5:  Examples

Several example models and data sets are used to demonstrate the applicability and validity of
using directional semivariogram models.

3.5.1:  Comparison With the Classic Method

In addition to the mathematical proof above, it is also important to demonstrate that the algorithm
and the software are correct.  Two approaches are pursued to evaluate the algorithm.  First,
conditions modeled using anisotropy factors with traditional methods are duplicated using
directional semivariogram models that mimic the anisotropy factors.  Then, model results using
directional semivariogram models, that cannot be described with anisotropy factors, are compared
with manual calculations.
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3.5: Examples

3.5.1.1:  Anisotropic Case: Directional Components Equivalent to Anisotropy Factors

To demonstrate that the directional semivariogram model technique produces the same results as
the conventional technique using anisotropy factors, a small synthetic data set with eleven data
points was created (Figure 3.3a).  Given equivalent model input, the results are identical.  The
semivariogram models for each case are:The principal axis is oriented to the Northwest.  The map

in Figure 3.3b is the traditional simple kriged map using a single semivariogram model with
anisotropy factors. Figure 3.3c was produced using directional semivariograms.  When the two
maps are subtracted from one another, the difference is zero at every grid location, indicating that
the directional semivariogram method is able to correctly reproduce the simple case where
anisotropic conditions exist and the perpendicular semivariogram models are related by anisotropy
factors.

3.5.1.2:  Anisotropic Case - Manual Solution

To demonstrate that the method produces the answers we intuitively expect, several g(h) values are
calculated manually for several points at various orientations with one model set (three orthogonal
directional semivariogram models). A second calculation will be made for the multi-nested model
defined in Figure 3.1.  The first model set is defined as:

for the points:

Method Axis Model Type Ramge Sill Nugget Y-Anisotropy

Anisotropic All Spherical 100 0.14 0.02 0.4

Spherical 250 0.11 0.75

Directional X Spherical 100 0.14 0.02 NA

Spherical 250 0.11 NA

Y Spherical 40 0.14 0.02 NA

Spherical 187.5 0.11 NA

Axis Model Type Range Sill Nugget

X Spherical 125 5 1

Y Gaussian 75 5 1

Z Spherical 30 5 1

Sample X Y Z

I 87 0 0

II 43 26 0

III 43 26 -11



VARIATION OF SEMIVRIOGRAM MODELS WITH DIRECTION Wingle

40 T-4595:  Colorado School of Mines

FIGURE 3-3. Example results confirming directional semivariograms can exactly mimic
anisotropy factors: a) sample data set, b) SK map using anisotropic factors, c) SK map using
directional semivariograms.
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the solutions are calculated:

I). For the point (87, 0 , 0), the solution is simple.  The point lies along a principal axis,
and in this case has a zero Y and Z component.  γ(h) can therefore be calculated
directly, using the standard spherical equation for the X direction:

 (3.19)

 (3.20)

 

 

 

where h is the separation distance, and r is the model range (for this equation only).

II). For the point (43, 26, 0), the first step is to define the nugget; γ(h)0 = 1.0.  Next the X
and Y directional components must be calculated (the Z axis has a zero component).
The X and Y intercepts of the ellipse that passes through (43, 26) and has an X/Y
aspect ratio of 125/75  (a/b) (remember the actual Gaussain range must be multiplied
by the to determine the practical ellipsoid range).  The intercepts, a’ and b’ are
determined using the standard equation for an ellipse (Equation 3.3):

 (using Equation 3.5a)
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 (using Equation 3.5b)
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b’ = 50.97

Given the X and Y intercepts, γ(h) for each ellipsoid axis is calculated:

 

 (3.21)

Note that the actual and not practical range is used to calculate γy(h)1.  Once the
maximum contributions for each axis have been determined, the component
contribution of each must be determined.  This is done by determining the effective
angle of the vector (43, 26) in the X-Y plane.  The effective angle is:

 

Given this angle, the components of γx(h) and γy(h) can be determined.  Intuitively
the X-axis component can be defined as:

 

and the Y-axis component is:

 

Adding the two components together yields a directional γ(h) of 2.499.  This yields
the same result as if Equation 3.18 were used:

γ x h( ) = −








 =1

3

35 1 5
49 74

125
0 5

49 74

125
2 827.

.
.

,
.

γ y
h rh C e( ) = −





−( ) ( )
1 1 1

2 2/

γ y h e( ) = −



 =−( ) ( )

1
50 97 755 1 1 849

2 2. / .

φ =

















=−tan .1
26

125

75 3
43

30 19o

2 827
90 30 19

90
1 879.

( . )
.

o o

o
− =

1 849
30 19

90
0 620.

.
.

o

o







=



T-4595:  Colorado School of Mines 43

3.5: Examples

 

When the γ(h)i components are summed, the total estimate for γ(h) is 2.449 + 1.0
which equals 3.449.

III). The same approach may be used for the last point (43, 26, -11), γ(h)0 = 1.0, and the
X, Y, and Z directional components must be calculated.  The first step is to calculate
the X,  Y, and Z intercepts for the ellipsoid that passes through (43, 26, -11) and has
an X/Y aspect ratio of 125/75 , a X/Z aspect ratio of 125/30, and a Y/Z aspect ratio of
75 /30.  The intercepts, a’, b’, and c’ are determined using the standard equation for
an ellipsoid (Equation 3.3):

  (using Equation 3.5a)

a’ = 67.64

 (using Equation 3.5b)

b’ = 70.29

 (using Equation 3.5c)

c’ = 16.23

Given the X, Y, and Z intercepts, γ(h)1 for each ellipsoid axis is calculated:
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Using the same methods as described for point II, γd’(h)1 can be determined:

Now that the X-Y axis contributions have been merged, the Z-axis component is
incorporated.  This requires that d’ and r be calculated.  d’ is calculated by merging
equations 3.12 and 3.13:

 (3.22)

Similar steps are used in the vertical R-Z plane through (43, 26, -11) as were
undertaken in the X-Y plane,.  For purposes of calculating the vector length h, only
absolute values for each coordinate are used, and c’ and d’ are substituted for c and
d.  The angle f from R to Z is:
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Given this angle, the components of γd(h)1 and γz(h)1 can be determined.

 

and the Z-axis component is:

 

Adding the two components together yields a directional γ(h)1 of 3.531.  This yields
the same result as if Equation 3.23 were used:

 

When the γ(h)i components are summed, the total estimate for γ(h) is 3.531 + 1.0
which equals 4.531.

For the final example, the one and two-nested structure models shown if Figure 3.1 are used.  This
example demonstrates that the modeler is not required to specify the same number of model
structures in all directions.  Although the algorithm requires the number of structures to be equal,
the algorithm can internally add extra structures as needed without affecting the model description.
The calculations will be made for two points separated by 200m at a 45° angle (x = 141.1, y =
141.1).  The models are defined:
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Note that the number of structures are the same in both directions, but the East-West models second
nest has a zero sill (C) component.  As described in the earlier examples, the nugget is a constant
with direction, therefore γ(h)0 = 0.022.  The remaining γ(h)i values are calculated as follows
(geometric interpretations are shown in Figure 3.4):

a’1 = 231.9

 
b’1 = 178.4

 

For the second nest, there is no East-West component.  For the algorithm to work correctly, an
additional East-West structure must be defined (the number of structures for all axes must be
equal).  To satisfy the algorithm and the specified Gaussian model, a zero sill component is used,
and the range is set equal to the previous nest.  This manipulation satisfies the algorithm, and leaves
the model definition unchanged:
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FIGURE 3-4. Geometric steps for calculating directional semivariogram model defined in Figure
3.1.  The major axis is aligned North-South, and the minor axis is aligned East-West.  Note, the 45°
angle is transformed (-») based on the anisotropy of the ellipsoid.
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a’1 = 162.8

 
b’1 = 283.4

 

 

 

The final step is to sum the γd’(h)i components:

3.5.2:  Practical Applications

A synthetic and a field data set are used to demonstrate the effectiveness and usefulness of the
technique.  For the synthetic case, the same data set that was used in section 3.4.1.1 is utilized,
though different assumptions about the X and Y semivariogram models are made.  The field data set
is residual bedrock elevation data from the Rocky Mountain Arsenal, Commerce City, Colorado.
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3.5.2.1:  Synthetic Directional Semivariogram Demonstration Set

To demonstrate that directional semivariogram models can have a significant impact on model
results, the data set in Figure 3.3a is used, but in this case anisotropy factors are not used, rather
directional semivariogram models are defined.  Since this is a synthetic data set, none of the
following models can be argued to be the best representation of site conditions, any more than the
other models, but the exercise demonstrates that directional semivariograms offer great flexibility in
adjusting the estimations to match perceived or measured site conditions.  Three different site
scenarios were calculated based on the following directional semivariogram models (Figure 3.5):

The ranges of the exponential and Gaussian models are significantly different from the spherical
model ranges used for the Y-axis (40m and 187.5m for two nests) in Section 3.4.1.1.  The range of a
exponential and Gaussian model must be multiplied by the following factors to yield the equivalent
spherical range (Deutsch and Journel, 1992):

Despite these rules of thumb, the range for the scenario III Gaussian model was set to 1/3 of the
two-nested Spherical model’s range.  This configuration more closely resembles the original and
alternate Y-axis models (Figure 3.5, the climbing limbs of the models are more similar, even if the
full Gaussian range is somewhat reduced).  These models, are oriented with their major axes to the
Northeast.  In Figure 3.6a, the structures for the minor axis were substituted with Gaussian and
Exponential models.  In Figure 3.6b, the sill terms for the first structure in the minor axis (Y) was
lowered to 0.7, and the sill for the second structure was raised to 0.18.  Finally, in Figure 3.6c, the
minor axis was substituted with a single Gaussian model (sill = 0.25, a second structure with a 0.0
sill component is assumed by the algorithm).  The estimations (Figure 3.3a,b, and Figure 3.6a-c)
show the same general NE-SW trend, but vary in detail.  The differences are easiest to see near the

Scenarios Axis Nest Model Type Range Sill Nugget

I X 1 Spherical 100 0.14 0.02

2 Spherical 250 0.11

Y 1 Gaussian 23.1 0.14 0.02

2 Exponential 62.5 0.11

II X 1 Spherical 100 0.14 0.02

2 Spherical 250 0.11

Y 1 Gaussian 23.1 0.07 0.02

2 Exponential 62.5 0.18

III X 1 Spherical 100 0.14 0.02

2 Spherical 250 0.11

Y 1 Gaussian 62.5 0.25 0.02

Model Tyoe Practical Range (a)

Exponential 3a

Gaussian a(sqrt(3))
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peaks at (100,300: in red), the valley depressions near (425, 210: in blue), and the slope transition at
(70, 130).   Although Figure 3.3b, and Figures 3.6a through 3.6c appear similar to each other, the
mean absolute differences are as much as 7%, and differences between individual cells are up to
37% (Figures 3.7a, 3.7c, and 3.8), when compared to the kriged mapped using anisotropy factors
(Figure 3.3b).  These scenarios demonstrate how the use of directional semivariogram model
descriptions impacts the resulting maps, relative to a scenario which utilizes a compromise
semivariogram model with anisotropy factors.

3.5.2.2:  Rocky Mountain Arsenal Demonstration Data Set

To demonstrate the effectiveness, and some of the difficulties, of directional kriging, a data set of
bedrock surface elevations (actually residuals from a second-order trend-surface) from the Rocky
Mountain Arsenal (RMA), Commerce City, Colorado is used.  With this data set, use of correct
directional semivariogram models reduced the average estimation variance over the map area, even
though an artificially large nugget was used.  Because of problems with the Gaussian

FIGURE 3-5. Semivariogram models used for synthetic directional semivariogram data set. Despite
the general rule of thumb that the practical Gaussian range to a spherical range (a) is the SQRT(3)
multiplied by the range (a), the Gaussian (range (a) x  SQRT(3)) model, because it mimicked the
general nature of the other models more closely.
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FIGURE 3-6. Results of directional semivariogram models using different assumptions about
major and minor semivariogram models.
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FIGURE 3-7. Differences between original SK models (Figure 3.3a-b), and directional
semivariogram models (Figures 3.6a-c).
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semivariogram model, the nugget term was increased by 260% to stabilize the kriging matrix
(Gaussian models can cause singular matrix problems with small nuggets (Ababou, et al., 1994;
Posa, 1989)).

3.5.2.2.1:  Background

Johnson (1995) had trouble evaluating this site due to constraint related to the semivariogram
model definition.  She recognized directional differences in spatial statistics, but anisotropy factors
would not allow her to model them correctly.  As a result, Johnson compromised with a two-nested
spherical model.  It is important that the RMA be modeled accurately, because, summarizing
Johnson (1995), there are many serious environmental concerns:

The RMA was established in 1942 for the production of chemical and incendiary
munitions.  From 1947 to 1982, herbicides and pesticides were also produced
(Environmental Science and Engineering, 1987).  During this time chemical agents, such
as levinstein mustard (H), phosgene, napalm, isopropylmethyl fluorophosphonate (Sarin
or GB), and dichlorodiphenyltrichloroethane (DDT) were produced (Harding Lawson
Associates, 1992).  Problems arose at the site because liquid wastes were disposed of in
lined and unlined evaporation basins, and waste was initially held in settling ponds or
transported by sewer or drainage ditch to the basin (Kuznear and Trautmann, 1980).  By
the 1950’s the effects of ground water contamination were noted; there was high
waterfowl mortality and extreme crop loss (Harding, Lawson, et al., 1992).  By 1974,

FIGURE 3-8. Distribution of differences between original SK models (Figure 3.3a-b), and
directional semivariogram models (Figures 3.6a-c).
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disopropylmethylphosphonate (DIMP) and dicyclopentadiene (DCPD) contamination was
detected off site (Environmental Science and Engineering, 1987).

Johnson (1995) investigated potential transport routes for contaminants from the RMA.  To
accomplish this, Johnson (1995) identified and simulated (using conditional indicator simulation)
paleo-river channels, coarse and fine sediment distribution,  and the ground water surface.  The
paleo-river channels are of interest because they provide potential pathways for ground water and
contaminant movement.  To identify these paleo-river channels Johnson (1995) simulated the
bedrock surface using boring data from 842 wells.  This bedrock surface was identified as an
ancient erosional surface which dips slightly to the Northwest towards the Platte River (Harding, et
al., 1992).  

In Johnson’s (1995) work, the regional dip was removed from the bedrock data using a second-
order trend-surface.  Using the residual data, Johnson performed semivariogram analyses and
conditional simulation.  A problem arose during the semivariogram analysis; the experimental
semivariograms in the minor and major search directions couldn’t be modeled well using a single
model semivariogram with anisotropy factors.  As a result, compromises were made in selecting
semivariogram models (Figure 3.9a) with the hope that, by honoring the short lag data, errors
would be acceptably small.

3.5.2.2.2:  Directional Semivariogram Kriging

The directional semivariogram kriging technique was to used separate the directional components
in semivariogram models.  The full series of simulations presented by Johnson (1995) is not
repeated here, but the new estimates of the bedrock surface honor the spatial distribution of the data
better than the estimates made by Johnson (1995).  This is accomplished by using simple kriging
and evaluating the estimation variance.  The estimation variance is a function of the data locations,
and the differences between ordinary kriging and indicator kriging, do not effect the estimation
variance.  It is important to note that the estimation variance only provides a comparison of
alternative data configurations; it is independent of the data values (Deutsch and Journel, 1992). 

Four semivariogram models were evaluated: (I) one is similar to Johnson’s (1995) two-nested
spherical-spherical model with anisotropy factors, but an improved model with a lower mean
square error (MSE) is used (Figure 3.9a); (II) another is an accurate directional spherical-spherical
/ Gaussian model (Figure 3.9b); (III) a second directional model based on II, but with a much larger
nugget to accommodate difficulties with the Gaussian model is used (Figure 3.9c), and finally (IV)
another two-nested spherical-spherical model with anisotropy factors, but an appropriate nugget is
used (Figure 3.9d).  The semivariogram models are summarized in Table 3.1.

Model I fits the major-axis (East-West) well, but its spherical-spherical structure is not able to
represent the inflection in the early portion of the minor axis (North-South) experimental
semivariogram.  This model assumes a zero nugget.  When this model is used with Simple Kriging
on the site data (Figure 3.10a), using a 50 by 50, two-dimensional grid, the smallest estimation
variance results of all the semivariogram models are obtained.  The kriged surface and estimation
variance are shown in Figures 3.10b-c.  It is thought that this model underrates the estimation
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variance due to the zero nugget.  It is clear that the nugget has a γ(h) value of approximately 16
(Figure 3.10b).  This incorrect assumption is corrected with model IV.

Model II (Figure 3.9) has the best fit of the four models evaluated, based on MSE measurements of
the experimental semivariograms.  The fit is particularly good for the minor axis.  The MSE for this

FIGURE 3-9. Experimental and model semivariograms for RMA bedrock residuals (2nd order
trend removed): a) anisotropy factor model optimized to minimize MSE based on Johnson (1995),
b) optimized minor-axis fit with Gaussian model (note MSE reduced by 82%), c) minor-axis
Gaussian model fit with elevated nugget to reduce kriging matrix instability, d) anisotropy factor
model optimized to minimize MSE, but also honor nugget defined in b).
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axis model is only 12% to 25% of all the other models evaluated.   From this model, it was
concluded that the nugget has a γ(h) value of 16.0.  Due to theoretical problems with Gaussian
models and the small nugget (less than 10% of the variance) associated with these data, this model
has no acceptable solution.  Many individual grid cell kriging matrices are singular, or have huge
kriging weights (weights greater than ±1.05 were considered unacceptable; weights greater than
±200 were found).  Regrettably, this behavior is inherent with the Gaussian model, but increasing
the nugget increases the stability of every matrix solution (Ababou, et al., 1994; Posa, 1989).

Model III (Figure 3.9c) was developed in an attempt to stabilize the solution, without completely
compromising the model results, the nugget was increased until there are no singular matrices or
individual kriging weights greater than 1.05 (this allows for some negative kriging weights).  To
attain this, the nugget was increased to 39.0 (a 244% increase); this is still only 8% of the data set
variance.  The kriged bedrock surface and estimation variance are shown in Figure 3.11a-b.  The
average estimation variance is significantly larger for this model than for model I.  The difference
between the estimation variances (Model III - Model I) are shown in Figures 3.11c and 3.12a.  The
estimation variance for model III, on average, is 12.7% larger than the estimation variance for
model I, but this is not a reasonable reflection of model quality, because the results of model I do
not account for the variance due to the nugget.

Model IV (Figure 3.9c) is a modification of model I and accounts for the nugget (although not
exaggerated as is necessary for the Gaussian model (III)).  The kriged surface and estimation
variances are shown in Figure 3.13a-b.  The difference between the estimation variances (Model III
- Model IV) are shown in Figures 3.13c and 3.12b.  Now that the nugget is included, it is reasonable
to compare the results of using the traditional anisotropy factor model, to those obtained by using
the directional semivariogram model approach.  Even though model III has increased the nugget by
244% to stabilize the Gaussian model, the mean difference in the estimation variance between
models III and IV is -5.20%.  This implies model III’s (the directional models) results are better, or
at least less uncertain, than the results from model IV.  A Q-Q (quantile-quantile) plot is also shown
in Figure 3.14 comparing the original (I) estimated residuals vs. each of the other models.  It shows

Model Axis Model Tyoe Range Sill Nugget Y-Aniso MSE

I X/Y Spherical 4400 234 0 1.833 943/767

Spherical 11000 246 0.780

II X Spherical 4400 201 16 NA 911

Spherical 11000 262 NA

Y Gaussian 2806 466 16 NA 136

III X Spherical 5330 224 39 NA 1270

Spherical 12480 217 NA

Y Gaussian 2874 441 NA 509

IV X/Y Spherical 4400 226 39 1.833 987/1060

Spherical 11000 238 16 0.780

TABLE 3.1. Alternative semivariogram models for RMA residual bedrock surface.  Range, 
sill, and nugget terms are in feet.
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that the results are similar in all models.  Each model generates a similar number of sample values
in each of 100 quantiles, but by fine tuning the semivariogram models the estimation variance can
be reduced without making any dramatic changes in the overall model statistics.

FIGURE 3-10. Location of sample wells at RMA (a), SK map of bedrock elevation residuals (b),
and estimation variance using an anisotropy factor, spherical-spherical semivariogram model I (c)
(Johnson, 1995).
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In this example, if the nugget is accounted for, the directional semivariograms yield a better result,
even when the nugget was artificially exaggerated only for the directional model to prevent
problems associated with use of the Gaussian model.  In some cases though, unstable models (such
as Gaussian) may make the use of directional models undesirable, even when they would, at first,
appear justified.  As Posa (1989) argues, and his conclusion is supported here, it is sometimes better

FIGURE 3-11. RMA SK map of bedrock elevation residuals (a), and estimation variance using
robust Gaussian factor semivariogram models (b), and difference between robust Gaussian (b) and
original (Figure 3.10c) estimation variance maps (c).
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to use a semivariogram model which is not as physically correct, but which is numerically more
robust (i.e. a spherical model).

The main problem with implementing directional semivariograms, in this case, was related to the
instability in the kriging matrix resulting from theoretical problems associated with using a small
nugget and a Gaussian semivariogram model.  This, however is a general problem for all kriging
methods, and should not reflect adversely on the directional semivariogram method.

FIGURE 3-12. Distribution of differences between alternative estimation variance maps: (a) the
difference between the robust Gaussian (III) and the anisotropy factor, spherical-spherical
semivariogram model (I); (b) the difference between the robust Gaussian (III) and the anisotropy
factor, spherical-spherical semivariogram model with nugget (I).  The positive, average difference
in (a) indicates the Gaussian model has a higher average estimation variance. The negative, average
difference in (b) indicates the Gaussian model has a lower average estimation variance.
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FIGURE 3-13. RMA SK map of bedrock elevation residuals (a), and estimation variance using the
anisotropic factor spherical-spherical semivariogram model with a valid nugget (IV) (b), and
difference between the robust Gaussian (III) (Figure 3.10c) and estimation variance maps (b).
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3.6:  Conclusions

This chapter demonstrates that better definition of the experimental semivariogram, yields results
which better honor the spatial statistics of the sample data.  This is illustrated by reduced estimation
variance when factors other than model definition are removed.  This is accomplished by defining
unique model semivariograms along each of the three principle axes of the semivariogram model
ellipsoid.  In addition to improving the results, the procedure also makes it easier to model

FIGURE 3-14. Q-Q plot of bedrock elevation residuals where the original Spherical model using
anisotropy factors (I) is compared versus 1) the original Gaussian model (II), 2) the robust
Gaussian model, and 3) the original Spherical model adjusted with a nugget.  The plot suggests that
the general nature of all the models are similar.
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experimental semivariograms, because one need not compromise when selecting model types and
sills for each axis. There is an increase in computational effort which increases total processing
time in this study (observed times increased 80% to 200%), but this cost is relatively minor when
compared to the total time the modeler spends developing semivariogram models.  Overall, use of
directional semivariogram modeling requires some additional computational time, but modeler
effort is reduced, and most important, a significant increase in accuracy may be attained.


