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ABSTRACT

Thereis agreat dea of uncertainty about the distribution of geologic and hydrologic propertiesin
the subsurface and the migration routes and extent of contaminants at most hazardous waste sites.
This is because site data is limited. This research develops four geostatistical techniques which
facilitate the assessment of and/or the reduction in the level of uncertainty associated with
describing the subsurface. First, jackknifing and Latin-Hypercube sampling are used to define the
uncertainty in the experimental semivariogram. Second, directiona differences in the spatial
variation of a semivariogram often cannot adequately be described using anisotropy factors; the
kriging process is modified to accommodate three unique, orthogonal, semivariogram models.
Third, the conditional simulation process is modified to use indicator classes rather than the
threshold level between indicators. Fourth, zones at a site are modeled using individual and merged
model semivariograms.

Using these methods is complex; consequently, a software package, UNCERT, was developed to
integrate data collection, data evaluation, site interpretation, ground water flow and contaminant
transport modeling, and data and model visualization. This software user interface makes the use
of these modified geostatistical methods a practical endeavor.

T-4595: Colorado School of Mines \Y



Vi

T-4595: Colorado School of Mines



TABLE OF CONTENTS

ABSTRACT e
TABLE OF CONTENTS .o
LIST OF FIGURES  ....ccooiiieec e
LIST OF TABLES ... s

CHAPTER 1 INTRODUCTION ..o

CHAPTER 2 JACKKNIFING & LATIN-HYPERCUBE SAMPLING

2.1: INtrodUCtion .o
2.2: SEMIVANOGIraMS ..o
2.3: Indicator Kriging And Stochastic Simulation
2.4: JaCKKNIfING v

2.4.1: Additiona Comments About Jackknifing
2.5: Latin-Hypercube Sampling — ......ccccoevvinninieee
2.6: EXPErt OpinioN ...occocvveveriere e
2.7 RESUIS oo
2.8: CONCIUSIONS  ..oveiiiieieie e

CHAPTER 3 VARIATION OF SEMIVRIOGRAM MODELSWITH DIRECTION

150 A 1 11 oo 0ot (' o
3.2: PrevioUSWOrK — ...occoeeececeee e
330 TREOIY e

3.3.1 Equation and Proof .........ccceevernininennn

3.3.2: Positive Definite Matrix Issues

3.4: Madification of Algorithms ... veveveiecees
3.4.1: Algorithm Constraints —........cccceeeveevennene
3.4.2: Computational CoSt  ....ccoevererriireee
3.5 EXaMPIES o
3.5.1: Comparison With the Classic Method
3.5.2: Practical Applications .......cccceevvevennne
3.6: CONCIUSIONS  ...oveiiiiieie e

N N W ow

12
15
16
18
19
24

27
28
29
31
36
37
37
38
38
38
48
61

T-4595: Colorado School of Mines

Vii



CHAPTER 4

CHAPTER 5

CHAPTER 6

CLASSVS. THRESHOLD INDICATOR SIMULATION ............... 63
7204 R 1 0o o [0 Tox o o 63
4.2: PrevioUSWOIK ..o 66
4,37 MENOAS ... s 69

4.3.1: Semivariogram Calculation .........ccccoceeeveenenens 70
4.3.2: DataDefinition  ..ocooeoeeeeeeeeeee e 70
4.3.3: Py-Po Caculations ..o 71

4.3.4: Difference Between Prior Hard and Prior Soft Data
CDF'sfor Class and Threshold Simulations —.........c.cce..... 72
4.3.5. Order Relation Violations ......c.ccccvevvevvvninnnnnnns 75
I SN oo [ o= o) 77
4.4.1; Synthetic DataSet  .....coceveveeeveeeveeviee e 77
4.4.2: Colorado School of Mines Survey Field —.......... 93
T @0 o 11 T o] 107

ZONAL KRIGING oot 113
5.1: Introduction and PreviousWOrk —.......ccccecvvevveenecninnens 113
5.2: Methodology — ...cccoeeveeerieirieeneee e 115
5.3: EXAMPIES oo 119

5.3.1: Synthetic Data Set Example  .....ccecvvvvvvvvennnne 119
5.3.2: Yorkshire, England Example  .....ccccevvvvveienene 121
5.3.3: Colorado School of Mines Survey Field Example 127
5.4: Stepsto Determineif Zonal Kriging isAppropriate —...... 146
5.5 CONCIUSIONS  ..ovoeiiciirieerie ettt 153

UNCERT: GEOSTATISTICAL, GROUND WATER MODELING, AND

VISUALIZATION SOFTWARE ..o 155
6.1 INtrOdUCTION  .veeviciecreceecre et 155
6.2 PrevioUSWOIK ..ot 155
6.3: Platform SUPPOIt ..o e 157
6.4: UNCERT MOUIES  ...oooveeiiceeciecee ettt 158
6.4.1; MaAINMENU  ooocreeeeerecee et erens 158
6.4.2: Plotgraph ..o 158
L N o 1 (o TR 158
6.4.4: DISICOMP oo 159
LSRR S 7= 1 o LT 159
6.4.6. Variofit  ...coceeeiciecece s 159
B.A.7) GIid oot 159
6.4.8: CONMOUr  ...ooiieiecee et e 160

viii

T-4595: Colorado School of Mines



TABLE OF CONTENTS

6.4.9: SUIACE o 160

6.4.10: BIOCK  ..ooveciicececeeee e 160

6.4.11: SISM & SISM3d  eovecieeee e 160

6.4.12: MOAMAIN oo 160

6.4.13: ME3AMaiN oo 161

B.4.14: AITAY oot 161

6.4.15: ULIHTIES oo 161

CHAPTER 7 SUMMARY AND CONCLUSIONS ... 163
7.1 Summary and CoNncClUSIONS  .....ccceeeveeeeerene e 163

7.2: Recommendations for Future Work —........cccceovevinennne 164

CHAPTER 8 BIBLIOGRAPHY .ottt 167
APPENDIX A UNCERT AND UNCERT USER'SMANUAL ..o 171
Al: Information and COMMENES.  ....ccccvveeverenerenerere e 171

ALL Warmanty: .o ere e 172

A2: Hardware/ Operating System Requirements: —................ 172

A3 Acquiring SOftWare:  ....cooveeereeeeeeeeee e 172

A4 INSEAlELON: o e 174

A4.1: Unpacking the Software: .........cccecevvenenenennenn 174

A4.2: Compiling UNCERT: ..o 174

A4.3: Setting Up User ACCOUNES. ..o 176

APPENDIX B SAMPLE DATA SETS oot 179

T-4595: Colorado School of Mines iX



Wingle

T-4595: Colorado School of Mines



LIST OF FIGURES

FIGURE 2-1.

FIGURE 2-2.

FIGURE 2-3.

FIGURE 2-4.

FIGURE 2-5.

FIGURE 2-6.

FIGURE 2-7.

Borehole data used to interpret the subsurface may not provide a unique
solution. In this case, there are eleven data samples; six of fine-
grained sedimentswith low hydraulic conductivity, and five of coarse-
grained sediments with high hydraulic conductivity. Although data
for each map is identical, the nature of the geology in each map is
substantially different. This illustrates that there is uncertainty
associated with the interpretation of the character of subsurface at
locations that have not been sampled..........ccccooveerieninicienenine 5

Contaminants will migrate in different patterns within the two geologic
models presented in Figure 2.1. It is important to evaluate the
probabl e aternative scenarios when designing a remediation plan.6

Features of a semivariogram and parameters defining the search area (after
Englund and Sparks, 1988). .........cccccverrenriennereeereeieseeieseeiens 8

Experimental and modeled semivariograms developed from the eleven
labeled data points in Figure 2.1. A great deal of uncertainty is
associated with the modeled semivariogram because of the limited
NUMBDES OF AAEAL ... 9

These experimental semivariograms based on 315 data points from the
models in Figure 2.1 were determined by overlaying a regular grid
(25 x 25') on each model. The distribution of high and low
conductivity materials in Figure 2.1a was determined to be isotropic
and is described by the model semivariogram in 2.5a. In Figure 2.1b,
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(1501 ()= 10

Jackknifing the eleven data points indicated in Figure 2.1 alows
evaluation of uncertainty associated with the semivariogram. The
vertical error-bars define the 95% confidence intervals for the mean
y*(h) of eachlag. The variance around the mean lag is represented by
the horizontal error bars. Each data point represents 1 instance of a

jackknifed experimental semivariogram. This experimental
semivariogram is based on the assumption of an isotropic material
Lo XS T o 1111 o o TS 13

Although anisotropy cannot be identified by evaluating single
semivariograms of the eleven data points, anisotropic character is
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CHAPTER 1 I NTRODUCTI ON

When designing a remediation plan for a hazardous waste site where the ground water is
contaminated, there are several questions of concern about the contaminant: whereisit, whereisit
going, how long will it take to get there, and what can be done to contain or remove it. To answer
these questions, one critical question is, what are the subsurface hydrologic flow conditions.
Unfortunately, asimportant asthis question is, aprecise answer isdifficult to obtain. Thisislargely
because we can only sample a small volume of the site; on the order of one 1/100,000th of the site.
Exploratory drilling is expensive and can create new migration routes between contaminated and
uncontaminated aquifers or zones, outcrops are generally very limited, and the distribution of the
materials that control the hydrologic conditions vary widely. Because of the complexity of the
hydrogeologic flow system, and the scarcity of data, there is usually substantial uncertainty in the
subsurface description.

To describe some of this uncertainty, this research project devel ops several geostatistical techniques
with the purpose of better defining or reducing uncertainty. A software package is also developed
to aid modelers with the data analysis, geostatistics and ground water flow and contaminant
transport modeling. The geostatistical techniques developed here are:

 Jackknifing the semivariogram and Latin-Hypercube sampling. These methods are
useful for defining the uncertainty associated with the semivariogram model definition
and applying that uncertainty in conditional indicator simulation.

* Directional semivariogram models. With traditional kriging techniques, the model
semivariogram is defined and oriented in the direction with the longest spatial
continuity, thus the longest model range. The spatial correlation, not oriented parallel to
the principal axis, is defined by anisotropy factors describing the minor perpendicular
axes. This approach is computationally efficient, but it is limiting. The method
developed in this research allows the modeler to describe and krige each orthogonal axis
independently.
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* Classdiscrete indicator simulation. Traditional discrete indicator simulation techniques
are based on the cumulative probability that a cell is less than a cut-off level or
threshold. When non-continuous, discrete data are evaluated, this approach can be non-
intuitive. A method where the probability that a discrete indicator class occurs at a cell
location is developed here. For the semivariogram analysis, this method is more
intuitive; for the simulation process, sensitivities due to indicator ordering are easier to
test; and though order relation violations are more common, the remedy is
mathematically more appropriate.

e Zona Kriging. One of the basic assumptions in kriging is the assumption of
stationarity (Journel and Huijbregts, 1978). Thisimpliesthat the spatial variation across
the siteis approximately constant. For many sites this may be reasonable, but for others,
this assumption will lead to significant errors. The zonal kriging method developed in
this research project alows the model to be divided into unique and transitional regions.

A collection of program modules was developed to make these techniques practically useful for
ground water modelers (as well as researchers from other disciplines). The software package is
called UNCERT, for its task is to facilitate uncertainty assessment of ground water problems. It is
composed of a number of individual modules: array, block, contour, distcomp, grid, histo,
modmain, mt3dmain, sisim, surface, vario, and variofit. These cover a variety of statistical,
geostatistical, ground water flow and contaminant transport models, and visualization applications.
These run in any UNIX, X-windows/motif environment. All the major applications and tools
utilize a user friendly, graphical user interface. Help manuals are also available for each package
on-line using HTML (Hypertext Markup Language).

Each of these methods or toolsis presented in an individual chapter. These chapters can be read as
“stand-alone” documents, though they are al related to geostatistics and reducing uncertainty.
Chapter 2 describes Jackknifing and Latin-Hypercube Sampling; Chapter 3, directiona
semivariogram analysis, Chapter 4, class versus threshold based indicator simulation; and Chapter
5, Zona Kriging. In the final chapter, Chapter 6, there is a brief description of the UNCERT
software package which contains the software described in Chapters 2 through 5, and many other
statistical, geostatistical, visualization, and ground water modeling tools. A more complete
description of the UNCERT package can be found on the tape (along with the source code) in
Appendix A, or on the World Wide Web at http://uncert.mines.edu/.
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