Evaluating Subsurface Uncertainty Using Modified Geostatistical Techniques

by:

A thesis submitted to the Faculty and Boar fulfillment of the requirements for the Deg	rd of Trustees of gree of Doctor of	f the Colorado School of Mines in partia f Philosophy (Geological Engineer).
Golden, Colorado Date:		
	Signed:	William L. Wingle
	Approved:	Dr. Eileen P. Poeter
Golden, Colorado Date:		
		Dr. Roger Slatt Professor and Department Head, Department of Geology and
		Geological Engineering

ABSTRACT

There is a great deal of uncertainty about the distribution of geologic and hydrologic properties in the subsurface and the migration routes and extent of contaminants at most hazardous waste sites. This is because site data is limited. This research develops four geostatistical techniques which facilitate the assessment of and/or the reduction in the level of uncertainty associated with describing the subsurface. First, jackknifing and Latin-Hypercube sampling are used to define the uncertainty in the experimental semivariogram. Second, directional differences in the spatial variation of a semivariogram often cannot adequately be described using anisotropy factors; the kriging process is modified to accommodate three unique, orthogonal, semivariogram models. Third, the conditional simulation process is modified to use indicator classes rather than the threshold level between indicators. Fourth, zones at a site are modeled using individual and merged model semivariograms.

Using these methods is complex; consequently, a software package, UNCERT, was developed to integrate data collection, data evaluation, site interpretation, ground water flow and contaminant transport modeling, and data and model visualization. This software user interface makes the use of these modified geostatistical methods a practical endeavor.

TABLE OF CONTENTS

	ABSTRACT vi TABLE OF CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xxi
CHAPTER 1	INTRODUCTION1
CHAPTER 2	JACKKNIFING & LATIN-HYPERCUBE SAMPLING 3 2.1: Introduction 3 2.2: Semivariograms 7 2.3: Indicator Kriging And Stochastic Simulation 7 2.4: Jackknifing 12 2.4.1: Additional Comments About Jackknifing 15 2.5: Latin-Hypercube Sampling 16 2.6: Expert Opinion 18 2.7: Results 19 2.8: Conclusions 24
CHAPTER 3	VARIATION OF SEMIVRIOGRAM MODELS WITH DIRECTION 27 3.1: Introduction 27 3.2: Previous Work 28 3.3: Theory 29 3.3.1 Equation and Proof 31 3.3.2: Positive Definite Matrix Issues 36 3.4: Modification of Algorithms 37 3.4.1: Algorithm Constraints 37 3.4.2: Computational Cost 38 3.5: Examples 38 3.5.1: Comparison With the Classic Method 38 3.5.2: Practical Applications 48 3.6: Conclusions 61

CER 4	CLASS VS. THRESHOLD INDICATOR SIMULATION	63
	4.1: Introduction	63
	4.2: Previous Work	66
	4.3: Methods	69
	4.3.1: Semivariogram Calculation	70
	4.3.2: Data Definition	70
	4.3.3: P ₁ -P ₂ Calculations	71
	4.3.4: Difference Between Prior Hard and Prior Soft Data	a
	CDF's for Class and Threshold Simulations	72
	4.3.5: Order Relation Violations	75
	4.4: Applications	77
	4.4.1: Synthetic Data Set	77
	4.4.2: Colorado School of Mines Survey Field	93
	4.5: Conclusions	107
TER 5	ZONAL KRIGING	113
	5.1: Introduction and Previous Work	113
	5.2: Methodology	115
	5.3: Examples	119
	5.3.1: Synthetic Data Set Example	119
	5.3.2: Yorkshire, England Example	121
	5.3.3: Colorado School of Mines Survey Field Example	127
	5.4: Steps to Determine if Zonal Kriging is Appropriate	146
	5.5: Conclusions	153
TER 6	UNCERT: GEOSTATISTICAL, GROUND WATER MODELING, AN	
	VISUALIZATION SOFTWARE	155
	6.1: Introduction	155
	6.2: Previous Work	155
	6.3: Platform Support	157
	6.4: UNCERT Modules	158
	6.4.1: Mainmenu	158
	6.4.2: Plotgraph	158
	6.4.3: Histo	158
	6.4.4: Distcomp	159
	6.4.5: Vario	159
		159 159
	6.4.7: Grid	

TABLE OF CONTENTS

	6.4.9: Surface	160
	6.4.10: Block	160
	6.4.11: Sisim & Sisim3d	160
	6.4.12: Modmain	160
	6.4.13: Mt3dmain	16
	6.4.14: Array	16
	6.4.15: Utilities	16
CHAPTER 7	SUMMARY AND CONCLUSIONS	16.
	7.1: Summary and Conclusions	16.
	7.2: Recommendations for Future Work	16
CHAPTER 8	BIBLIOGRAPHY	16
APPENDIX A	UNCERT AND UNCERT USER'S MANUAL	17
	A1: Information and Comments:	17
	A1.1: Warranty:	172
	A2: Hardware / Operating System Requirements:	172
	A3: Acquiring Software:	172
	A4: Installation:	174
	A4.1: Unpacking the Software:	174
	A4.2: Compiling UNCERT:	174
	A4.3: Setting Up User Accounts:	17
A DDENINIY R	SAMDI E DATA SETS	170

LIST OF FIGURES

FIGURE 2-1.	Borehole data used to interpret the subsurface may not provide a unique solution. In this case, there are eleven data samples; six of fine-grained sediments with low hydraulic conductivity, and five of coarse-grained sediments with high hydraulic conductivity. Although data for each map is identical, the nature of the geology in each map is substantially different. This illustrates that there is uncertainty associated with the interpretation of the character of subsurface at locations that have not been sampled
FIGURE 2-2.	Contaminants will migrate in different patterns within the two geologic models presented in Figure 2.1. It is important to evaluate the probable alternative scenarios when designing a remediation plan.6
FIGURE 2-3.	Features of a semivariogram and parameters defining the search area (after Englund and Sparks, 1988)
FIGURE 2-4.	Experimental and modeled semivariograms developed from the eleven labeled data points in Figure 2.1. A great deal of uncertainty is associated with the modeled semivariogram because of the limited number of data.
FIGURE 2-5.	These experimental semivariograms based on 315 data points from the models in Figure 2.1 were determined by overlaying a regular grid (25' x 25') on each model. The distribution of high and low conductivity materials in Figure 2.1a was determined to be isotropic and is described by the model semivariogram in 2.5a. In Figure 2.1b, the distribution is anisotropic and the major and minor axes of the model semivariogram ellipsoid are shown in 2.5b and 2.5c respectively
FIGURE 2-6.	Jackknifing the eleven data points indicated in Figure 2.1 allows evaluation of uncertainty associated with the semivariogram. The vertical error-bars define the 95% confidence intervals for the mean γ*(h) of each lag. The variance around the mean lag is represented by the horizontal error bars. Each data point represents 1 instance of a jackknifed experimental semivariogram. This experimental semivariogram is based on the assumption of an isotropic material distribution.
FIGURE 2-7.	Although anisotropy cannot be identified by evaluating single semivariograms of the eleven data points, anisotropic character is

	hinted at when the same data are jackknifed along specified search directions. For a search direction of 45°, the range is likely to be less than 100 feet. In the 135° search direction, the range is likely to be greater than 150 feet, and possibly more than 500 feet. The anisotropy defined in Figure 2.5b-2.5c cannot be determined from the eleven data points, but its possibility is indicated by the data Symbols are described in the caption of Figure 2.6
FIGURE 2-8.	When a substantial amount of data are collected, the experimental semivariogram may be clearly defined. In this jackknifed simulation there is little uncertainty in the lag means, and there would be little uncertainty in defining the model semivariogram
FIGURE 2-9.	Reasonable models must be selected from the shaded region in 2.8a to represent the "flavor" of the alternative interpretations of the data Four model semivariograms with a nugget selected from the lowe quartile of possible nugget values are shown in 2.8b. The ranges of the four semivariograms are selected to represent each of the quartile of possible ranges. Sixteen models would be used to represent the distribution of semivariogram models for the isotropic case. Symbol are described in the caption of Figure 2.6
FIGURE 2-10.	These two simulations were generated assuming isotropy and using the model semivariogram developed from the extensive data set and illustrated in Figure 2.5a. The solutions are a reasonable approximation of the map in Figure 2.1a
FIGURE 2-11.	These two simulations were generated assuming isotropy and using a latin-hypercube sample from the jackknifed model semivariogram $(C_0=0.0, C_1=0.25, a_1=115')$ developed from the eleven data points and illustrated in Figure 2.6. The solutions are a reasonable approximation of the map in Figure 2.1a, and are very similar to those generated in Figure 2.10. Much of the reason that the simulations in Figure 2.10 and 2.11 are similar is that the same random path through the grid was used to simulate 2.10a and 2.11a and another path was used to simulate 2.10b and 2.11b
FIGURE 2-12.	These two stochastic simulations were generated assuming anisotropy using the jackknifed model semivariogram based on the eleven data points and illustrated in Figure 2.6. The latin-hypercube technique was applied and these are two simulations of a potential 256, a described in the text. Even though the geologic models presented in Figure 2.1 are different, use of jackknifing and Latin Hypercube sampling can produce both configurations from limited data. These solutions are a reasonable approximation of the map in Figure 2.1b Unfortunately, the method will not indicate whether these simulation or the simulations in Figures 2.10 and 2.11 are the most likely because the data are not sufficient to draw such a conclusion

FIGURE 2-13.	These two simulations were generated assuming anisotropy using the extensive model semivariogram based on the extensive data set and illustrated in Figures 2.5b-2.5c. The solutions are a reasonable approximation of the map in Figure 2.1b, and are very similar to those generated in Figure 2.12, indicating that extensive data are more important to determining the character of the semivariogram than they are to conditioning the simulation
FIGURE 3-1.	When directional semivariograms are used, distance alone does not determine the most influential neighboring points. In this example, all points in the minor model axis direction (b) that are separated by less than x_2 (158 m) have smaller $\gamma(h)$'s than points separated by x_1 (109 m) on the major-axis (a). The same is true for x_3 and x_2 respectively.
FIGURE 3-2.	Directional semivariogram analysis components
FIGURE 3-3.	Example results confirming directional semivariograms can exactly mimic anisotropy factors: a) sample data set, b) SK map using anisotropic factors, c) SK map using directional semivariograms
FIGURE 3-4.	Geometric steps for calculating directional semivariogram model defined in Figure 3.1. The major axis is aligned North-South, and the minor axis is aligned East-West. Note, the 45° angle is transformed (-») based on the anisotropy of the ellipsoid
FIGURE 3-5.	Semivariogram models used for synthetic directional semivariogram data set. Despite the general rule of thumb that the practical Gaussian range to a spherical range (a) is the SQRT(3) multiplied by the range (a), the Gaussian (range (a) x SQRT(3)) model, because it mimicked the general nature of the other models more closely
FIGURE 3-6.	Results of directional semivariogram models using different assumptions about major and minor semivariogram models
FIGURE 3-7.	Differences between original SK models (Figure 3.3a-b), and directional semivariogram models (Figures 3.6a-c)
FIGURE 3-8.	Distribution of differences between original SK models (Figure 3.3a-b), and directional semivariogram models (Figures 3.6a-c)
FIGURE 3-9.	Experimental and model semivariograms for RMA bedrock residuals (2nd order trend removed): a) anisotropy factor model optimized to minimize MSE based on Johnson (1995), b) optimized minor-axis fit with Gaussian model (note MSE reduced by 82%), c) minor-axis Gaussian model fit with elevated nugget to reduce kriging matrix instability, d) anisotropy factor model optimized to minimize MSE, but also honor nugget defined in b)

	v
FIGURE 3-10.	Location of sample wells at RMA (a), SK map of bedrock elevation residuals (b), and estimation variance using an anisotropy factor spherical-spherical semivariogram model I (c) (Johnson, 1995).
FIGURE 3-11.	RMA SK map of bedrock elevation residuals (a), and estimation variance using robust Gaussian factor semivariogram models (b), and difference between robust Gaussian (b) and original (Figure 3.10c) estimation variance maps (c)
FIGURE 3-12.	Distribution of differences between alternative estimation variance maps (a) the difference between the robust Gaussian (III) and the anisotropy factor, spherical-spherical semivariogram model (I); (b) the difference between the robust Gaussian (III) and the anisotropy factor, spherical-spherical semivariogram model with nugget (I). The positive, average difference in (a) indicates the Gaussian model has a higher average estimation variance. The negative, average difference in (b) indicates the Gaussian model has a lower average estimation variance
FIGURE 3-13.	RMA SK map of bedrock elevation residuals (a), and estimation variance using the anisotropic factor spherical-spherical semivariogram mode with a valid nugget (IV) (b), and difference between the robus Gaussian (III) (Figure 3.10c) and estimation variance maps (b).
FIGURE 3-14.	Q-Q plot of bedrock elevation residuals where the original Spherical model using anisotropy factors (I) is compared versus 1) the original Gaussian model (II), 2) the robust Gaussian model, and 3) the original Spherical model adjusted with a nugget. The plot suggests that the general nature of all the models are similar.
FIGURE 4-1.	Spatial distribution of several indicators. Defining semivariograms based on indicator classes is more intuitive, because the range reflects the average size of the indicator bodies. The class semivariogram mode ranges are: silt = 112m, silty-sand = 106m, sand = 60m, and gravel = 41m. For thresholds, semivariogram model ranges are: silt vs. al others = 112m, silt and silty-sand vs. sand and gravel = 68m, and gravel vs. all others = 41m.
FIGURE 4-2.	Ordinary Kriging (and most other estimation methods) tends to average of smooth data to achieve a best linear unbiased estimate (BLUE) of reality. Indicator Kriging with conditional simulation provides a means for modeling the variability observed in nature, while still honoring the field data. Conditional simulation does not produce a best estimate of reality, but it yields models with characteristics similar to reality. When multiple realizations are made and averaged values will approximate the smoothed, BLUE
FIGURE 4-3.	Class and threshold indicator kriging generate the cumulative density function (CDF) in different ways. Threshold CDF's are determined directly from the probability that the specified grid location is less

	than each threshold level (a). The final CDF term should be less than 1.0 with the remaining probability attributed to the final indicator. Calculating class CDF's requires two steps. First the probability of occurrence of each class is calculated (b). The PDF is converted into a CDF by summing the individual PDF terms (c). Ideally the probabilities will sum to 1.0. For both the threshold and class approaches, a random number between 0.0 and 1.0, is generated to determine the estimated indicator for the cell. From the random number (e.g. 0.82), a horizontal line is drawn across to the CDF curve, an a vertical line is dropped from the intersection, to identify the indicator estimate (5)
FIGURE 4-4.	This illustration shows the step wise manner in which a grid is kriged using Indicator Kriging in conjunction with stochastic simulation. Grid cells containing sample data (hard data and some types of soft data) are defined prior to kriging. Once these points are defined, the remaining cells are evaluated. To krige an unestimated cell, a random location is selected, evaluated and redefined as a hard data point, then the next undefined cell is randomly selected. This cell selection and estimation process is continued until all grid cells have been visited and defined
FIGURE 4-5.	Graphical method for calculating p ₁ and p ₂ values for a specific threshold (After Alabert, 1987). Data from CSM Survey Field
FIGURE 4-6.	Graphical method for calculating p ₁ and p ₂ values for a specific class. Data from CSM Survey Field
FIGURE 4-7.	For both the class and threshold approach, there are two basic types of order relation violations (ORV). a) An individual CDF probability is less than the CDF of a smaller threshold (the CDF is decreasing); this is equivalent to a class having a negative probability of occurrence. This type of ORV is resolved for thresholds by averaging the two CDF's so that they are equal; for classes, a 0.0 probability of occurrence is assigned to the PDF. b) When cumulative probabilities are greater than 1.0, the value is truncated to 1.0 for the threshold approach, while for the class approach, the probability of each class is proportionally rescaled, so that the CDF will sum to 1.0 76
FIGURE 4-8.	Synthetic data set distribution. 78
FIGURE 4-9.	Reordering indicators in conditional simulation changes the results for an individual simulation grid cell, because the CDF changes along with the indicator ordering, even though the individual components of the PDF do not. Here the indicators from Figure 4.3 have been reordered. The same random number is used, but now, instead of indicator #5 being selected, indicator #4 is selected

VVIII	
ealization (#32) pairs for the a) original indicator ordering, b) revers ordering, and c) arbitrary reordering for thresholds (left) and class (right). In these realization pairs there are significant different between the class and threshold results: a) there is more silty-sand the class realization at location (270, 10); b) sand bisects the silt in threshold realization at location (100, 100); this not present in threshold realization; c) more sand is in the class realization at location (270, 10). The differences between the realization pairs in a, b, and are expected, because reordering the indicators changes the CDF.	FIGURE 4-10.
ealization (#100) pairs for a) original indicator ordering, b) revers ordering, and c) arbitrary reordering for thresholds (left) and class (right). These threshold and class realization pairs are similar. T differences between the realization pairs in a, b, and c are expected because reordering the indicators changes the CDF	FIGURE 4-11.
Iaximum probability of occurrence for each indicator. At hard data locations, the indicator type is known; the probability is 0% for a other indicator type, or 100% for the specified indicator type	FIGURE 4-12.
Iaximum probability of occurrence of any indicator. At known day points, the maximum probability of being a particular indicator 100%. The minimum probability is 33% (100% / # of indicators); these locations each indicator is equally likely to occur. These may are useful for evaluating the spatial distribution of uncertainty.	FIGURE 4-13.
requency of maximum probabilities throughout the grid. At known day points, the maximum probability is 100%. The minimum probabil is 33% (100% / # of indicators); at locations where each indicator equally likely to occur.	FIGURE 4-14.
ifference between a) threshold and class maximum probability may and b) threshold and threshold (reversed) probability maps. The maps show areas, where the different series return different average results. Differences are largest, although of opposite sign, in red a blue areas. Differences are smallest in green areas. The histogram are useful for identifying the magnitude and distribution of the differences.	FIGURE 4-15 a,b.
ifference between a) threshold and threshold (reordered) maximular probability maps, and b) class and class (reversed) probability map. These maps show areas, where the different series return different averaged results. The histograms are useful for identifying the magnitude and distribution of the differences	FIGURE 4-15 c,d.
ifference between a) class and class (reordered) maximum probabil maps, and b) threshold (reversed) and class (reversed) probabil maps. These maps show areas, where the different series retu	FIGURE 4-15 e,f.

	different averaged results. The histograms are useful for identifying the magnitude and distribution of the differences
FIGURE 4-15 g.	Difference between threshold (reordered) and class (reordered) maximum probability maps. These maps show areas, where the different series return different averaged results. The histograms are useful for identifying the magnitude and distribution of the differences 90
FIGURE 4-16.	Test of random number generator: a) scatter of 10,000 sequential random numbers, b) frequency distribution of 10,000 random numbers (equal distribution would put 1% in each class), and c) frequency distribution of 100,000 random numbers (equal distribution would put 1% in each class).
FIGURE 4-17.	Coarse grid realization (#32) pair for the original indicator ordering. These grids, are slightly different, due to an ORV occurring at (490m, 30m). Because of the ORV, the CDF's varied between the two methods at this cell, and a random number in each realization selected different material types for the cell. From this point forward, the prior sample data, and prior evaluated cells varied
FIGURE 4-18.	CSM Survey Field location map. 95
FIGURE 4-19.	CSM Survey Field site map. Dots represent borehole locations. Solid lines identify location of tomography surveys
FIGURE 4-20.	CSM Survey Field borehole and tomography data converted to indicators. The dotted layer delineates the extents of the model grid
FIGURE 4-21.	Individual threshold and class realization #1
FIGURE 4-22.	Individual threshold and class realization #37
FIGURE 4-23 a,b,c.	Maximum probability of occurrence for threshold and class indicators #1, #2, and #3. At known hard data points, probability is 0% for any other indicator type, or 100% for the specified indicator type 104
FIGURE 4-23 d,e,f.	Maximum probability of occurrence for threshold and class indicators #4, #5, and #6. At known hard data points, probability is 0% for any other indicator type, or 100% for the specified indicator type 105
FIGURE 4-23 g,h.	Maximum probability of occurrence for threshold and class indicators #7 and #8. At known hard data points, probability is 0% for any other indicator type, or 100% for the specified indicator type
FIGURE 4-24 a,b,c,d.	Difference between the class and threshold, individual indicators (#1-4) maximum probability of occurrence maps
FIGURE 4-24 e,f,g,h.	Difference between the class and threshold, individual indicators (#5-8) maximum probability of occurrence maps
FIGURE 4-25 a,b.	Maximum probability of occurrence of any indicator. At known data points, probability is 100%. The minimum probability is 12.5% (100% / # of indicators); at these locations each indicator is equally

		likely to occur (no cells had this minimum probability). These maps are useful for identifying the spatial distribution of uncertainty.
FIGUR	RE 4-26 a,b.	Histograms indicate the maximum probability of occurrence of any indicator. At known data points, probability is 100%. The minimum probability is 12.5% (100% / # of indicators); at these locations each indicator is equally likely to occur (no cells had this minimum probability). Class realizations have slightly higher mean indicating lower overall uncertainty.
FIGUR	RE 4-27.	a) Spatial distribution of the difference between the class and threshold maximum probability maps; b) histogram of the same information. The positive mean difference indicates the class realizations have a lower level of uncertainty.
FIGUR	RE 5-1.	Spatial statistics may vary across a site, such that a single semivariogram model may not be appropriate for the entire site
FIGUR	RE 5-2.	Basic steps involved in the standard kriging algorithm with additional steps needed to implement Zonal Kriging indicated in italics 115
FIGUR	RE 5-3.	Different methods for describing zone contacts: a) sharp, b) gradational and c) fuzzy
FIGUR	RE 5-4.	The search for nearest neighbors varies with zone boundary type: a) sharp b) gradational, and c) fuzzy
FIGUR	RE 5-5.	Different forms of ordinary and zonal kriging. (a) Sample data, (b) a traditional Simple Kriged map, (c) one possible zone map from a conditional indicator simulation, (d) sharp transition, (e) gradational transition, (f) fuzzy transition
FIGUR	RE 5-6.	Model definition information for the Yorkshire cross-section: a) actual cross-section sampled with 2m x 1m cells; the locations of b) 7 and c 10 "well samples;" d) zone definition
FIGUR	RE 5-7.	Exhaustive experimental and model indicator semivariograms for SH/SH-SS threshold (full cross-section) of the Yorkshire data set 123
FIGUR	RE 5-8.	Exhaustive experimental and Model indicator semivariograms for SH-SS. SS threshold (full cross-section) of the Yorkshire data set
FIGUR	RE 5-9.	Sub-sampled experimental and Model indicator semivariograms for SH SH-SS threshold (well data) of the Yorkshire data set
FIGUR	RE 5-10.	Sub-sampled experimental and Model indicator semivariograms for SH-SS/SS threshold (well data) of the Yorkshire data set
FIGUR	RE 5-11.	Realizations from single-zone simulation series
FIGUR	RE 5-12.	Realizations from two-zone simulation series
FIGUR	RE 5-13.	Impact of altering the semivariogram nugget independently in the top and bottom zones of a section: a) original simulation section; b) reduced nugget in top zone; c) reduced nugget in bottom zone

FIGURE 5-14. CSI	M Survey Field location map
FIGURE 5-15. CSI	M Survey Field site map. Dots represent borehole locations. Solid lines identify location of tomography surveys
FIGURE 5-16. CSI	M Survey Field borehole and tomography data converted to indicators. 132
FIGURE 5-17. Ton	nographic cross-section at CSM Survey Field (viewing North-West). Dashed line is approximate location of Fountain / Lyons Formations contact
FIGURE 5-18. CSI	M Survey Field hard and soft data distributions (converted to indicators) for the Fountain (a) and Lyons (b) Formations 134
FIGURE 5-19. Dis	tribution of hard and soft (Type-A only) data for full data set and for Fountain and Lyons Formations regions
FIGURE 5-20. CSI	M Survey Field zone definition
FIGURE 5-21. Gra	phical method for calculating p_1 and p_2 values for a specific threshold (After Alabert, 1987). Data from CSM Survey Field 140
FIGURE 5-22. Gra	phical method for calculating p_1 and p_2 values for a specific class. Data from CSM Survey Field. Note the similarities between the $Class > 10000$ and the $Class < 9250$ diagrams, and the diagrams in Figure 5.21. They are fundamentally identical. This is always the case for the first and last class and threshold p_1 - p_2 calculations. 141
FIGURE 5-23. Sing	gle-zone and two-zone realization pair #19 143
FIGURE 5-24. Dis	tribution of indicators a) in the single-zone realization #19 (Figure 5.23a) and b-d) in two-zone realization #19 (Figure 5.23b). The single-zone realization poorly reproduces original data distribution (Figure 5.19a), whereas the two-zone realization reasonably reproduces the full and individual formation distributions (Figure 5.19a-c).
FIGURE 5-25. Sing	gle-zone and two-zone realization pair #27 145
FIGURE 5-26. Dis	tribution of indicators a) in the single-zone realization #27 (Figure 5.25a) and b-d) in the two-zone realization #27 (Figure 5.25b). The single-zone realization poorly reproduces original data distribution (Figure 5.19a), whereas the two-zone realization reasonably reproduces the full and individual formation distributions (Figure 5.19a-c).
FIGURE 5-27. Sing	gle-zone and two-zone realization pair #44
FIGURE 5-28. Dis	tribution of indicators a) in the single-zone realization #44 (Figure 5.27a) and b-d) in the two-zone realization #44 (Figure 5.27b). The single-zone realization poorly reproduces original data distribution (Figure 5.19a), whereas the two-zone realization reasonably

Detailed flow chart of uncertainty analysis software package.

156

FIGURE 6-1.

LIST OF TABLES

TABLE 3.1.	Alternative semivariogram models for RMA residual bedrock surface. Range, sill, and nugget terms are in feet
TABLE 4.1.	Kriging weight and nearest neighbors for both class and threshold realization #32. The indicators at each point, and the kriging weights are identical. 94
TABLE 4.2.	Indicator and associated material type. 96
TABLE 4.3.	The indicator classification is based on sonic velocity measurements, and are matched to approximate hydraulic conductivity's
TABLE 4.4.	Threshold p ₁ -p ₂ estimates. 98
TABLE 4.5.	Class p ₁ -p ₂ estimates.
TABLE 4.6.	Threshold prior hard and prior soft (Type-A) data distributions. The large difference in threshold 3.5 propagates through threshold 6.5 99
TABLE 4.7.	Class prior hard and prior soft (Type-A) data distributions 100
TABLE 4.8.	Threshold semivariogram models. 100
TABLE 4.9.	Class semivariogram models. 101
TABLE 5.1 a,b.	CSM Survey Field threshold (single-zone) and class (two-zone: Fountain and Lyons Formation) semivariogram models
TABLE 5.1 c.	CSM Survey Field threshold (single-zone) and class (two-zone: Fountain and Lyons Formation) semivariogram models
TABLE 5.2.	CSM Survey Field threshold (single-zone) and class (two-zone: Fountain and Lyons Formation) hard and soft data (Type-A only) sample data distributions

INTRODUCTION

CHAPTER 1

When designing a remediation plan for a hazardous waste site where the ground water is contaminated, there are several questions of concern about the contaminant: where is it, where is it going, how long will it take to get there, and what can be done to contain or remove it. To answer these questions, one critical question is, what are the subsurface hydrologic flow conditions. Unfortunately, as important as this question is, a precise answer is difficult to obtain. This is largely because we can only sample a small volume of the site; on the order of one 1/100,000th of the site. Exploratory drilling is expensive and can create new migration routes between contaminated and uncontaminated aquifers or zones, outcrops are generally very limited, and the distribution of the materials that control the hydrologic conditions vary widely. Because of the complexity of the hydrogeologic flow system, and the scarcity of data, there is usually substantial uncertainty in the subsurface description.

To describe some of this uncertainty, this research project develops several geostatistical techniques with the purpose of better defining or reducing uncertainty. A software package is also developed to aid modelers with the data analysis, geostatistics and ground water flow and contaminant transport modeling. The geostatistical techniques developed here are:

- Jackknifing the semivariogram and Latin-Hypercube sampling. These methods are useful for defining the uncertainty associated with the semivariogram model definition and applying that uncertainty in conditional indicator simulation.
- Directional semivariogram models. With traditional kriging techniques, the model semivariogram is defined and oriented in the direction with the longest spatial continuity, thus the longest model range. The spatial correlation, not oriented parallel to the principal axis, is defined by anisotropy factors describing the minor perpendicular axes. This approach is computationally efficient, but it is limiting. The method developed in this research allows the modeler to describe and krige each orthogonal axis independently.

INTRODUCTION Wingle

• Class discrete indicator simulation. Traditional discrete indicator simulation techniques are based on the cumulative probability that a cell is less than a cut-off level or threshold. When non-continuous, discrete data are evaluated, this approach can be non-intuitive. A method where the probability that a discrete indicator class occurs at a cell location is developed here. For the semivariogram analysis, this method is more intuitive; for the simulation process, sensitivities due to indicator ordering are easier to test; and though order relation violations are more common, the remedy is mathematically more appropriate.

• Zonal Kriging. One of the basic assumptions in kriging is the assumption of stationarity (Journel and Huijbregts, 1978). This implies that the spatial variation across the site is approximately constant. For many sites this may be reasonable, but for others, this assumption will lead to significant errors. The zonal kriging method developed in this research project allows the model to be divided into unique and transitional regions.

A collection of program modules was developed to make these techniques practically useful for ground water modelers (as well as researchers from other disciplines). The software package is called UNCERT, for its task is to facilitate uncertainty assessment of ground water problems. It is composed of a number of individual modules: array, block, contour, distcomp, grid, histo, modmain, mt3dmain, sisim, surface, vario, and variofit. These cover a variety of statistical, geostatistical, ground water flow and contaminant transport models, and visualization applications. These run in any UNIX, X-windows/motif environment. All the major applications and tools utilize a user friendly, graphical user interface. Help manuals are also available for each package on-line using HTML (Hypertext Markup Language).

Each of these methods or tools is presented in an individual chapter. These chapters can be read as "stand-alone" documents, though they are all related to geostatistics and reducing uncertainty. Chapter 2 describes Jackknifing and Latin-Hypercube Sampling; Chapter 3, directional semivariogram analysis; Chapter 4, class versus threshold based indicator simulation; and Chapter 5, Zonal Kriging. In the final chapter, Chapter 6, there is a brief description of the UNCERT software package which contains the software described in Chapters 2 through 5, and many other statistical, geostatistical, visualization, and ground water modeling tools. A more complete description of the UNCERT package can be found on the tape (along with the source code) in Appendix A, or on the World Wide Web at http://uncert.mines.edu/.